Carosini Lorenzo, Oddi Virginia, Giorgino Francesco, Hansen Lena M, Seron Benoit, Piacentini Simone, Guggemos Tobias, Agresti Iris, Loredo Juan C, Walther Philip
University of Vienna, Faculty of Physics,Vienna Center for Quantum Science and Technology (VCQ), 1090 Vienna, Austria.
Christian Doppler Laboratory for Photonic Quantum Computer, Faculty of Physics, University of Vienna, 1090 Vienna, Austria.
Sci Adv. 2024 Apr 19;10(16):eadj0993. doi: 10.1126/sciadv.adj0993.
The interference of nonclassical states of light enables quantum-enhanced applications reaching from metrology to computation. Most commonly, the polarization or spatial location of single photons are used as addressable degrees of freedom for turning these applications into praxis. However, the scale-up for the processing of a large number of photons of these architectures is very resource-demanding due to the rapidly increasing number of components, such as optical elements, photon sources, and detectors. Here, we demonstrate a resource-efficient architecture for multiphoton processing based on time-bin encoding in a single spatial mode. We use an efficient quantum dot single-photon source and a fast programmable time-bin interferometer to observe the interference of up to eight photons in 16 modes, all recorded only with one detector, thus considerably reducing the physical overhead previously needed for achieving equivalent tasks. Our results can form the basis for a future universal photonics quantum processor operating in a single spatial mode.
光的非经典态的干涉使得从计量学到计算等量子增强应用成为可能。最常见的是,单光子的偏振或空间位置被用作可寻址的自由度,以便将这些应用付诸实践。然而,由于诸如光学元件、光子源和探测器等组件数量的迅速增加,这些架构在处理大量光子时的扩展对资源要求非常高。在此,我们展示了一种基于单空间模式下时间-bin编码的多光子处理的资源高效架构。我们使用高效的量子点单光子源和快速可编程的时间-bin干涉仪,以观察多达八个光子在16个模式下的干涉,所有这些仅用一个探测器记录,从而大大减少了此前完成等效任务所需的物理开销。我们的结果可为未来在单空间模式下运行的通用光子量子处理器奠定基础。