Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg - Bad Krozingen, Medical Center - University of Freiburg and Faculty of Medicine, University of Freiburg, Freiburg, Germany.
Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain.
J Physiol. 2024 Sep;602(18):4437-4456. doi: 10.1113/JP284805. Epub 2024 Apr 20.
Macrophages (MΦ) play pivotal roles in tissue homeostasis and repair. Their mechanical environment has been identified as a key modulator of various cell functions, and MΦ mechanosensitivity is likely to be critical - in particular in a rhythmically contracting organ such as the heart. Cultured MΦ, differentiated in vitro from bone marrow (MΦ), form a popular research model. This study explores the activity of mechanosensitive ion channels (MSC) in murine MΦ and compares it to MSC activity in MΦ enzymatically isolated from cardiac tissue (tissue-resident MΦ; MΦ). We show that MΦ and MΦ have stretch-induced currents, indicating the presence of functional MSC in their plasma membrane. The current profiles in MΦ and in MΦ show characteristics of cation non-selective MSC such as Piezo1 or transient receptor potential channels. While Piezo1 ion channel activity is detectable in the plasma membrane of MΦ using the patch-clamp technique, or by measuring cytosolic calcium concentration upon perfusion with the Piezo1 channel agonist Yoda1, no Piezo1 channel activity was observed in MΦ. The selective transient receptor potential vanilloid 4 (TRPV4) channel agonist GSK1016790A induces calcium entry in MΦ and in MΦ. In MΦ isolated from left-ventricular scar tissue 28 days after cryoablation, stretch-induced current characteristics are not significantly different compared to non-injured control tissue, even though scarred ventricular tissue is expected to be mechanically remodelled and to contain an altered composition of pre-existing cardiac and circulation-recruited MΦ. Our data suggest that the in vitro differentiation protocols used to obtain MΦ generate cells that differ from MΦ recruited from the circulation during tissue repair in vivo. Further investigations are needed to explore MSC identity in lineage-traced MΦ in scar tissue, and to compare mechanosensitivity of circulating monocytes with that of MΦ. KEY POINTS: Bone marrow-derived (MΦ) and tissue resident (MΦ) macrophages have stretch-induced currents, indicating expression of functional mechanosensitive channels (MSC) in their plasma membrane. Stretch-activated current profiles show characteristics of cation non-selective MSC; and mRNA coding for MSC, including Piezo1 and TRPV4, is expressed in murine MΦ and in MΦ. Calcium entry upon pharmacological activation of TRPV4 confirms functionality of the channel in MΦ and in MΦ. Piezo1 ion channel activity is detected in the plasma membrane of MΦ but not in MΦ, suggesting that MΦ may not be a good model to study the mechanotransduction of MΦ. Stretch-induced currents, Piezo1 mRNA expression and response to pharmacological activation are not significantly changed in cardiac MΦ 28 days after cryoinjury compared to sham operated mice.
巨噬细胞 (MΦ) 在组织稳态和修复中发挥着关键作用。它们的力学环境已被确定为各种细胞功能的关键调节剂,而 MΦ 的机械敏感性可能至关重要——特别是在心脏等周期性收缩的器官中。体外从骨髓 (MΦ) 分化而来的培养 MΦ 是一种流行的研究模型。本研究探讨了机械敏感离子通道 (MSC) 在鼠 MΦ 中的活性,并将其与心脏组织中酶分离的 MSC 活性 (组织驻留 MΦ;MΦ) 进行了比较。我们表明,MΦ 和 MΦ 都有拉伸诱导的电流,这表明它们的质膜中存在功能性 MSC。MΦ 和 MΦ 中的电流特征表明存在阳离子非选择性 MSC,例如 Piezo1 或瞬时受体电位通道。虽然可以使用膜片钳技术或在用 Piezo1 通道激动剂 Yoda1 灌注时测量细胞溶质钙浓度来检测 MΦ 质膜中的 Piezo1 离子通道活性,但在 MΦ 中未观察到 Piezo1 通道活性。选择性瞬时受体电位香草醛 4 (TRPV4) 通道激动剂 GSK1016790A 可诱导 MΦ 和 MΦ 中的钙内流。在冷冻消融后 28 天的左心室瘢痕组织中分离的 MΦ 中,与未受伤的对照组织相比,拉伸诱导的电流特征没有显著差异,尽管预期受损的心室组织会发生力学重塑,并包含已存在的心脏和募集的循环 MΦ 的改变组成。我们的数据表明,用于获得 MΦ 的体外分化方案生成的细胞与体内组织修复过程中从循环中募集的 MΦ 不同。需要进一步研究以探索谱系追踪的 MΦ 在瘢痕组织中的 MSC 特性,并比较循环单核细胞与 MΦ 的机械敏感性。关键点:骨髓衍生的 (MΦ) 和组织驻留的 (MΦ) 巨噬细胞具有拉伸诱导的电流,表明其质膜中表达功能性机械敏感通道 (MSC)。拉伸激活电流特征表明存在阳离子非选择性 MSC;并且编码 MSC 的 mRNA,包括 Piezo1 和 TRPV4,在鼠 MΦ 和 MΦ 中表达。TRPV4 药理学激活时的钙内流证实了该通道在 MΦ 和 MΦ 中的功能。在 MΦ 的质膜中检测到 Piezo1 离子通道活性,但在 MΦ 中未检测到,这表明 MΦ 可能不是研究 MΦ 机械转导的良好模型。与 sham 手术小鼠相比,冷冻损伤后 28 天,心脏 MΦ 中的拉伸诱导电流、Piezo1 mRNA 表达和对药理学激活的反应没有明显变化。