Suppr超能文献

显微镜图像的两两图像拼接技术的比较分析。

A comparative analysis of pairwise image stitching techniques for microscopy images.

机构信息

Institute of Medical Science and Technology, Shahid Beheshti University, Tehran, Iran.

出版信息

Sci Rep. 2024 Apr 22;14(1):9215. doi: 10.1038/s41598-024-59626-y.

Abstract

Stitching of microscopic images is a technique used to combine multiple overlapping images (tiles) from biological samples with a limited field of view and high resolution to create a whole slide image. Image stitching involves two main steps: pairwise registration and global alignment. Most of the computational load and the accuracy of the stitching algorithm depend on the pairwise registration method. Therefore, choosing an efficient, accurate, robust, and fast pairwise registration method is crucial in the whole slide imaging technique. This paper presents a detailed comparative analysis of different pairwise registration techniques in terms of execution time and quality. These techniques included feature-based methods such as Harris, Shi-Thomasi, FAST, ORB, BRISK, SURF, SIFT, KAZE, MSER, and deep learning-based SuperPoint features. Additionally, region-based methods were analyzed, which were based on the normalized cross-correlation (NCC) and the combination of phase correlation and NCC. Investigations have been conducted on microscopy images from different modalities such as bright-field, phase-contrast, and fluorescence. The feature-based methods were highly robust to uneven illumination in tiles. Moreover, some features were found to be more accurate and faster than region-based methods, with the SURF features identified as the most effective technique. This study provides valuable insights into the selection of the most efficient and accurate pairwise registration method for creating whole slide images, which is essential for the advancement of computational pathology and biology.

摘要

显微镜图像拼接是一种将具有有限视场和高分辨率的生物样本的多个重叠图像(瓦片)组合成一个全切片图像的技术。图像拼接包括两个主要步骤:两两配准和全局对准。大多数计算负载和拼接算法的准确性都取决于两两配准方法。因此,选择一种高效、准确、鲁棒和快速的两两配准方法对于全切片成像技术至关重要。本文详细比较了不同两两配准技术在执行时间和质量方面的性能。这些技术包括基于特征的方法,如 Harris、Shi-Thomasi、FAST、ORB、BRISK、SURF、SIFT、KAZE、MSER 和基于深度学习的 SuperPoint 特征。此外,还分析了基于归一化互相关(NCC)和相位相关与 NCC 组合的基于区域的方法。研究了来自不同模式的显微镜图像,如明场、相差和荧光。基于特征的方法对瓦片中的不均匀照明具有很高的鲁棒性。此外,一些特征被发现比基于区域的方法更准确和更快,其中 SURF 特征被认为是最有效的技术。这项研究为选择最有效和准确的两两配准方法来创建全切片图像提供了有价值的见解,这对于计算病理学和生物学的发展至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f18b/11035624/45546574b841/41598_2024_59626_Fig1_HTML.jpg

相似文献

1
A comparative analysis of pairwise image stitching techniques for microscopy images.
Sci Rep. 2024 Apr 22;14(1):9215. doi: 10.1038/s41598-024-59626-y.
2
Fast and robust feature-based stitching algorithm for microscopic images.
Sci Rep. 2024 Jun 10;14(1):13304. doi: 10.1038/s41598-024-61970-y.
3
A method for fast automated microscope image stitching.
Micron. 2013 May;48:17-25. doi: 10.1016/j.micron.2013.01.006. Epub 2013 Feb 14.
4
RegWSI: Whole slide image registration using combined deep feature- and intensity-based methods: Winner of the ACROBAT 2023 challenge.
Comput Methods Programs Biomed. 2024 Jun;250:108187. doi: 10.1016/j.cmpb.2024.108187. Epub 2024 Apr 22.
7
Seamless stitching of tile scan microscope images.
J Microsc. 2015 Jun;258(3):223-32. doi: 10.1111/jmi.12236. Epub 2015 Mar 18.
8
Large-scale time-lapse scanning electron microscopy image mosaic using a smooth stitching strategy.
Microsc Res Tech. 2023 Aug;86(8):929-942. doi: 10.1002/jemt.24334. Epub 2023 Apr 29.
9
Automated stitching of microscope images of fluorescence in cells with minimal overlap.
Micron. 2019 Nov;126:102718. doi: 10.1016/j.micron.2019.102718. Epub 2019 Aug 16.
10
A Medical Image Registration Method Based on Progressive Images.
Comput Math Methods Med. 2021 Jul 27;2021:4504306. doi: 10.1155/2021/4504306. eCollection 2021.

引用本文的文献

1
RT-4M: Real-Time Mosaicing Manager for Manual Microscopy System.
Sensors (Basel). 2025 May 8;25(10):2968. doi: 10.3390/s25102968.
2
Analysis of biofilm assembly by large area automated AFM.
NPJ Biofilms Microbiomes. 2025 May 8;11(1):75. doi: 10.1038/s41522-025-00704-y.
4
Fast and robust feature-based stitching algorithm for microscopic images.
Sci Rep. 2024 Jun 10;14(1):13304. doi: 10.1038/s41598-024-61970-y.

本文引用的文献

1
Stitching and registering highly multiplexed whole-slide images of tissues and tumors using ASHLAR.
Bioinformatics. 2022 Sep 30;38(19):4613-4621. doi: 10.1093/bioinformatics/btac544.
2
Simple Shading Correction Method for Brightfield Whole Slide Imaging.
Sensors (Basel). 2020 May 29;20(11):3084. doi: 10.3390/s20113084.
3
Confidence-based dynamic optimization model for biomedical image mosaicking.
J Opt Soc Am A Opt Image Sci Vis. 2019 Nov 1;36(11):C28-C39. doi: 10.1364/JOSAA.36.000C28.
5
Shading correction: compensation for illumination and sensor inhomogeneities.
Curr Protoc Cytom. 2001 May;Chapter 2:Unit 2.11. doi: 10.1002/0471142956.cy0211s14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验