Park Junhui
Pukyong National University, Busan, Korea.
Inquiry. 2024 Jan-Dec;61:469580241248134. doi: 10.1177/00469580241248134.
Null hypothesis significance testing (NHST) in medical research is increasingly being supplemented by estimation statistics, focusing on effect sizes (ESs) and confidence intervals (CIs). This study evaluates the expression of ESs and CIs for binary outcomes. A utilitarian framework is proposed, emphasizing the number of beneficiaries and the impact level. To evaluate clinical significance, minimal clinically important risk difference (MCIRD) is proposed based on event magnitude (EM). Within this framework, risk difference (RD) is introduced as the primary measure. To assess the performance of RD, we compared its statistical power against other measures (risk ratio, RR; odds ratio, OR; Cohen's ) in individual study scenarios, and visual information conveyance in meta-analysis scenarios. RDs maintain statistical power in comparison to other measures in individual studies. They provide clarity on the true impact of clinical interventions without compromising statistical integrity. Meta-analytic results indicate that using RDs directly enhances transparency, uncovers heterogeneity, and addresses misaligned assumptions. This approach, by quantifying clinical effectiveness under a utilitarian perspective, facilitates the applicability of research to patient care and encourages shared decision-making. The study advocates for reporting baseline risks (BRs) with RDs and recommends a standardized presentation of these statistics. In a utilitarian perspective, adopting RD as the preferred ES can foster a transparent, patient-focused research ethos. This aids in accurately presenting the magnitude and variability of treatment effects, offering a new direction in methodology.
医学研究中的零假设显著性检验(NHST)越来越多地被估计统计所补充,后者侧重于效应大小(ESs)和置信区间(CIs)。本研究评估了二元结局的ESs和CIs的表达情况。提出了一个功利主义框架,强调受益人数和影响程度。为了评估临床意义,基于事件幅度(EM)提出了最小临床重要风险差异(MCIRD)。在此框架内,引入风险差异(RD)作为主要衡量指标。为了评估RD的性能,我们在个体研究场景中比较了其统计效能与其他指标(风险比,RR;优势比,OR;科恩系数),以及在荟萃分析场景中的视觉信息传达情况。在个体研究中,与其他指标相比,RDs保持了统计效能。它们在不损害统计完整性的情况下,清晰地显示了临床干预的真实影响。荟萃分析结果表明,直接使用RDs可提高透明度,揭示异质性,并解决假设不一致的问题。这种方法通过在功利主义视角下量化临床有效性,促进了研究在患者护理中的应用,并鼓励共同决策。该研究提倡在报告RDs时同时报告基线风险(BRs),并建议对这些统计数据进行标准化呈现。从功利主义角度来看,采用RD作为首选的ES可以培养一种透明的、以患者为中心的研究风气。这有助于准确呈现治疗效果的大小和变异性,为方法学提供了新的方向。