Suppr超能文献

整合多组学分析和机器学习鉴定胃癌免疫治疗耐药的枢纽基因和潜在机制。

Integrated multi-omics analysis and machine learning identify hub genes and potential mechanisms of resistance to immunotherapy in gastric cancer.

机构信息

Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China.

出版信息

Aging (Albany NY). 2024 Apr 22;16(8):7331-7356. doi: 10.18632/aging.205760.

Abstract

BACKGROUND

Patients with gastric cancer respond poorly to immunotherapy. There are still unknowns about the biomarkers associated with immunotherapy sensitivity and their underlying molecular mechanisms.

METHODS

Gene expression data for gastric cancer were gathered from TCGA and GEO databases. DEGs associated with immunotherapy response came from ICBatlas. KEGG and GO analyses investigated pathways. Hub genes identification employed multiple machine algorithms. Associations between hub genes and signaling pathways, disease genes, immune cell infiltration, drug sensitivity, and prognostic predictions were explored via multi-omics analysis. Hub gene expression was validated through HPA and CCLE. Multiple algorithms pinpointed Cancer-Associated Fibroblasts genes (CAFs), with ten machine-learning methods generating CAFs scores for prognosis. Model gene expression was validated at the single-cell level using the TISCH database.

RESULTS

We identified 201 upregulated and 935 downregulated DEGs. Three hub genes, namely CDH6, EGFLAM, and RASGRF2, were unveiled. These genes are implicated in diverse disease-related signaling pathways. Additionally, they exhibited significant correlations with disease-associated gene expression, immune cell infiltration, and drug sensitivity. Exploration of the HPA and CCLE databases exposed substantial expression variations across patients and cell lines for these genes. Subsequently, we identified CAFs-associated genes and established a robust prognostic model. The analysis in the TISCH database showed that the genes in this model were highly expressed in CAFs.

CONCLUSIONS

The results unveil an association between CDH6, EGFLAM, and RASGRF2 and the immunotherapeutic response in gastric cancer. These genes hold potential as predictive biomarkers for gastric cancer immunotherapy resistance and prognostic assessment.

摘要

背景

胃癌患者对免疫疗法反应不佳。与免疫疗法敏感性相关的生物标志物及其潜在的分子机制仍不清楚。

方法

从 TCGA 和 GEO 数据库中收集胃癌的基因表达数据。与免疫疗法反应相关的差异表达基因来自 ICBatlas。KEGG 和 GO 分析研究了途径。使用多种机器算法识别枢纽基因。通过多组学分析探讨了枢纽基因与信号通路、疾病基因、免疫细胞浸润、药物敏感性和预后预测之间的关系。通过 HPA 和 CCLE 验证了枢纽基因的表达。多种算法确定了癌症相关成纤维细胞基因 (CAFs),十种机器学习方法为预后生成 CAFs 评分。使用 TISCH 数据库在单细胞水平上验证模型基因表达。

结果

我们确定了 201 个上调和 935 个下调的 DEGs。发现了三个枢纽基因,即 CDH6、EGFLAM 和 RASGRF2。这些基因参与了多种与疾病相关的信号通路。此外,它们与疾病相关基因表达、免疫细胞浸润和药物敏感性具有显著相关性。对 HPA 和 CCLE 数据库的探索表明,这些基因在患者和细胞系中存在显著的表达差异。随后,我们确定了与 CAFs 相关的基因,并建立了一个稳健的预后模型。在 TISCH 数据库中的分析表明,该模型中的基因在 CAFs 中高度表达。

结论

结果揭示了 CDH6、EGFLAM 和 RASGRF2 与胃癌免疫治疗反应之间的关联。这些基因可能成为预测胃癌免疫治疗耐药性和预后评估的生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8252/11087130/d389815e5a08/aging-16-205760-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验