University of Bordeaux, CNRS, IBGC UMR 5095, Bordeaux, France.
University of Bordeaux, Bordeaux Bioinformatics Center CBiB, Bordeaux, France.
Bioinformatics. 2024 May 2;40(5). doi: 10.1093/bioinformatics/btae282.
Many diseases, such as cancer, are characterized by an alteration of cellular metabolism allowing cells to adapt to changes in the microenvironment. Stable isotope-resolved metabolomics (SIRM) and downstream data analyses are widely used techniques for unraveling cells' metabolic activity to understand the altered functioning of metabolic pathways in the diseased state. While a number of bioinformatic solutions exist for the differential analysis of SIRM data, there is currently no available resource providing a comprehensive toolbox.
In this work, we present DIMet, a one-stop comprehensive tool for differential analysis of targeted tracer data. DIMet accepts metabolite total abundances, isotopologue contributions, and isotopic mean enrichment, and supports differential comparison (pairwise and multi-group), time-series analyses, and labeling profile comparison. Moreover, it integrates transcriptomics and targeted metabolomics data through network-based metabolograms. We illustrate the use of DIMet in real SIRM datasets obtained from Glioblastoma P3 cell-line samples. DIMet is open-source, and is readily available for routine downstream analysis of isotope-labeled targeted metabolomics data, as it can be used both in the command line interface or as a complete toolkit in the public Galaxy Europe and Workfow4Metabolomics web platforms.
DIMet is freely available at https://github.com/cbib/DIMet, and through https://usegalaxy.eu and https://workflow4metabolomics.usegalaxy.fr. All the datasets are available at Zenodo https://zenodo.org/records/10925786.
许多疾病,如癌症,其特征是细胞代谢的改变,使细胞能够适应微环境的变化。稳定同位素分辨代谢组学(SIRM)和下游数据分析是广泛用于揭示细胞代谢活性的技术,以了解疾病状态下代谢途径的改变功能。虽然有许多生物信息学解决方案可用于 SIRM 数据的差异分析,但目前没有可用的资源提供全面的工具包。
在这项工作中,我们提出了 DIMet,这是一种用于靶向示踪剂数据差异分析的一站式综合工具。DIMet 接受代谢物总丰度、同位素加合物贡献和同位素平均富集,并支持差异比较(成对和多组)、时间序列分析和标记分布比较。此外,它通过基于网络的代谢组学图整合转录组学和靶向代谢组学数据。我们通过从 Glioblastoma P3 细胞系样本中获得的真实 SIRM 数据集说明了 DIMet 的使用。DIMet 是开源的,并且可以随时用于对同位素标记的靶向代谢组学数据进行常规下游分析,因为它既可以在命令行界面中使用,也可以在公共 Galaxy Europe 和 Workfow4Metabolomics 网络平台中作为完整工具包使用。
DIMet 可在 https://github.com/cbib/DIMet 上免费获得,并可通过 https://usegalaxy.eu 和 https://workflow4metabolomics.usegalaxy.fr 使用。所有数据集均可在 Zenodo https://zenodo.org/records/10925786 上获得。