Nanjing University of Posts and Telecommunications, China.
Nanjing University of Aeronautics and Astronautics, China.
Neural Netw. 2024 Aug;176:106324. doi: 10.1016/j.neunet.2024.106324. Epub 2024 Apr 15.
Generalized zero-shot learning (GZSL) aims to recognize both seen and unseen classes, while only samples from seen classes are available for training. The mainstream methods mitigate the lack of unseen training data by simulating the visual unseen samples. However, the sample generator is actually learned with just seen-class samples, and semantic descriptions of unseen classes are just provided to the pre-trained sample generator for unseen data generation, therefore, the generator would have bias towards seen categories, and the unseen generation quality, including both precision and diversity, is still the main learning challenge. To this end, we propose a Prototype-Guided Generation for Generalized Zero-Shot Learning (PGZSL), in order to guide the sample generation with unseen knowledge. First, unseen data generation is guided and rectified in PGZSL by contrastive prototypical anchors with both class semantic consistency and feature discriminability. Second, PGZSL introduces Certainty-Driven Mixup for generator to enrich the diversity of generated unseen samples, while suppress the generation of uncertain boundary samples as well. Empirical results over five benchmark datasets show that PGZSL significantly outperforms the SOTA methods in both ZSL and GZSL tasks.
广义零样本学习(GZSL)旨在识别可见和不可见的类别,而仅可使用可见类别的样本进行训练。主流方法通过模拟不可见的视觉样本来减轻不可见训练数据的缺乏。然而,样本生成器实际上是仅使用可见类别的样本进行学习的,并且不可见类别的语义描述仅提供给预训练的样本生成器以生成不可见数据,因此,生成器会偏向于可见类别,并且不可见的生成质量,包括精度和多样性,仍然是主要的学习挑战。为此,我们提出了一种用于广义零样本学习的原型引导生成(PGZSL),以利用不可见的知识来指导样本生成。首先,在 PGZSL 中,通过具有类语义一致性和特征可区分性的对比原型锚点来引导和纠正不可见数据的生成。其次,PGZSL 引入了确定性驱动的混合(Certainty-Driven Mixup),以丰富生成的不可见样本的多样性,同时抑制不确定边界样本的生成。在五个基准数据集上的实验结果表明,PGZSL 在 ZSL 和 GZSL 任务中均显著优于 SOTA 方法。