Bowen Trevor A, Bale Stuart D, Chandran Benjamin D G, Chasapis Alexandros, Chen Christopher H K, Dudok de Wit Thierry, Mallet Alfred, Meyrand Romain, Squire Jonathan
Space Sciences Laboratory, University of California, Berkeley, Berkeley, CA USA.
Physics Department, University of California, Berkeley, Berkeley, CA USA.
Nat Astron. 2024;8(4):482-490. doi: 10.1038/s41550-023-02186-4. Epub 2024 Jan 23.
The dissipation of turbulence in astrophysical systems is fundamental to energy transfer and heating in environments ranging from the solar wind and corona to accretion disks and the intracluster medium. Although turbulent dissipation is relatively well understood in fluid dynamics, astrophysical plasmas often exhibit exotic behaviour, arising from the lack of interparticle collisions, which complicates turbulent dissipation and heating in these systems. Recent observations by NASA's Parker Solar Probe mission in the inner heliosphere have shed new light on the role of ion cyclotron resonance as a potential candidate for turbulent dissipation and plasma heating. Here, using in situ observations of turbulence and wave populations, we show that ion cyclotron waves provide a major pathway for dissipation and plasma heating in the solar wind. Our results support recent theoretical predictions of turbulence in the inner heliosphere, known as the helicity barrier, that suggest a role of cyclotron resonance in ion-scale dissipation. Taken together, these results provide important constraints for turbulent dissipation and acceleration efficiency in astrophysical plasmas.
在从太阳风、日冕到吸积盘和星系团内介质等各种环境中,天体物理系统中的湍流耗散对于能量传递和加热至关重要。尽管湍流耗散在流体动力学中已得到较好理解,但天体物理等离子体常常表现出奇特行为,这源于粒子间碰撞的缺乏,这使得这些系统中的湍流耗散和加热变得复杂。美国国家航空航天局(NASA)的帕克太阳探测器任务近期在内日球层的观测,为离子回旋共振作为湍流耗散和等离子体加热的潜在候选机制的作用带来了新的认识。在此,利用对湍流和波群的原位观测,我们表明离子回旋波为太阳风中的耗散和等离子体加热提供了一条主要途径。我们的结果支持了内日球层中湍流的近期理论预测,即所谓的螺旋度屏障,该预测表明回旋共振在离子尺度耗散中发挥作用。综合来看,这些结果为天体物理等离子体中的湍流耗散和加速效率提供了重要限制。