Suppr超能文献

雪断裂实验中裂纹扩展模式的数值研究。

Numerical investigation of crack propagation regimes in snow fracture experiments.

作者信息

Bobillier Grégoire, Bergfeld Bastian, Dual Jürg, Gaume Johan, van Herwijnen Alec, Schweizer Jürg

机构信息

WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland.

Climate Change, Extremes, and Natural Hazards in Alpine Regions Research Center CERC, Davos, Switzerland.

出版信息

Granul Matter. 2024;26(3):58. doi: 10.1007/s10035-024-01423-5. Epub 2024 Apr 22.

Abstract

UNLABELLED

A snow slab avalanche releases after failure initiation and crack propagation in a highly porous weak snow layer buried below a cohesive slab. While our knowledge of crack propagation during avalanche formation has greatly improved over the last decades, it still remains unclear how snow mechanical properties affect the dynamics of crack propagation. This is partly due to a lack of non-invasive measurement methods to investigate the micro-mechanical aspects of the process. Using a DEM model, we therefore analyzed the influence of snow cover properties on the dynamics of crack propagation in weak snowpack layers. By focusing on the steady-state crack speed, our results showed two distinct fracture process regimes that depend on slope angle, leading to very different crack propagation speeds. For long experiments on level terrain, weak layer fracture is mainly driven by compressive stresses. Steady-state crack speed mainly depends on slab and weak layer elastic moduli as well as weak layer strength. We suggest a semi-empirical model to predict crack speed, which can be up to 0.6 times the slab shear wave speed. For long experiments on steep slopes, a supershear regime appeared, where the crack propagation speed reached approximately 1.6 times the slab shear wave speed. A detailed micro-mechanical analysis of stresses revealed a fracture principally driven by shear. Overall, our findings provide new insight into the micro-mechanics of dynamic crack propagation in snow, and how these are linked to snow cover properties.

SUPPLEMENTARY INFORMATION

The online version contains supplementary material available at 10.1007/s10035-024-01423-5.

摘要

未标注

在一个粘性雪板下方掩埋的高孔隙率弱雪层中,当破坏起始和裂缝扩展发生后,雪板雪崩就会释放。尽管在过去几十年里,我们对雪崩形成过程中裂缝扩展的认识有了很大提高,但雪的力学性质如何影响裂缝扩展动力学仍不清楚。部分原因是缺乏用于研究该过程微观力学方面的非侵入性测量方法。因此,我们使用离散单元法(DEM)模型分析了雪覆盖特性对弱积雪层中裂缝扩展动力学的影响。通过关注稳态裂缝速度,我们的结果显示了两种不同的断裂过程模式,这取决于坡度角,导致裂缝扩展速度非常不同。对于在水平地形上的长时间实验,弱层断裂主要由压应力驱动。稳态裂缝速度主要取决于雪板和弱层的弹性模量以及弱层强度。我们提出了一个半经验模型来预测裂缝速度,其速度可达雪板剪切波速度的0.6倍。对于在陡坡上的长时间实验,出现了超剪切模式,其中裂缝扩展速度达到了雪板剪切波速度的约1.6倍。对应力的详细微观力学分析表明,断裂主要由剪切驱动。总体而言,我们的研究结果为雪中动态裂缝扩展的微观力学以及这些力学与雪覆盖特性的联系提供了新的见解。

补充信息

在线版本包含可在10.1007/s10035-024-01423-5获取的补充材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd09/11035419/3f6e288f1173/10035_2024_1423_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验