Suppr超能文献

优化阳极催化层中的离聚物分布以实现稳定的质子交换膜水电解

Optimizing Ionomer Distribution in Anode Catalyst Layer for Stable Proton Exchange Membrane Water Electrolysis.

作者信息

Liu Han, Wang Xinhui, Lao Kejie, Wen Linrui, Huang Meiquan, Liu Jiawei, Hu Tian, Hu Bo, Xie Shunji, Li Shuirong, Fang Xiaoliang, Zheng Nanfeng, Tao Hua Bing

机构信息

State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.

Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China.

出版信息

Adv Mater. 2024 Jul;36(28):e2402780. doi: 10.1002/adma.202402780. Epub 2024 May 2.

Abstract

The high cost of proton exchange membrane water electrolysis (PEMWE) originates from the usage of precious materials, insufficient efficiency, and lifetime. In this work, an important degradation mechanism of PEMWE caused by dynamics of ionomers over time in anode catalyst layer (ACL), which is a purely mechanical degradation of microstructure, is identified. Contrary to conventional understanding that the microstructure of ACL is static, the micropores are inclined to be occupied by ionomers due to the localized swelling/creep/migration, especially near the ACL/PTL (porous transport layer) interface, where they form transport channels of reactant/product couples. Consequently, the ACL with increased ionomers at PTL/ACL interface exhibit rapid and continuous degradation. In addition, a close correlation between the microstructure of ACL and the catalyst ink is discovered. Specifically, if more ionomers migrate to the top layer of the ink, more ionomers accumulate at the ACL/PEM interface, leaving fewer ionomers at the ACL/PTL interface. Therefore, the ionomer distribution in ACL is successfully optimized, which exhibits reduced ionomers at the ACL/PTL interface and enriches ionomers at the ACL/PEM interface, reducing the decay rate by a factor of three when operated at 2.0 A cm and 80 °C. The findings provide a general way to achieve low-cost hydrogen production.

摘要

质子交换膜水电解槽(PEMWE)成本高昂,源于使用了贵重材料、效率不足以及使用寿命有限。在这项工作中,确定了阳极催化剂层(ACL)中离聚物随时间变化的动力学导致的PEMWE一种重要降解机制,这是微观结构的一种纯粹机械降解。与传统认知中ACL微观结构是静态的相反,由于局部膨胀/蠕变/迁移,微孔倾向于被离聚物占据,尤其是在ACL/PTL(多孔传输层)界面附近,在那里它们形成反应物/产物对的传输通道。因此,PTL/ACL界面处离聚物增加的ACL会迅速且持续降解。此外,还发现了ACL微观结构与催化剂油墨之间的密切关联。具体而言,如果更多离聚物迁移到油墨顶层,更多离聚物会在ACL/PEM界面处积累,而在ACL/PTL界面处的离聚物则减少。因此,成功优化了ACL中的离聚物分布,在ACL/PTL界面处离聚物减少,在ACL/PEM界面处离聚物富集,在2.0 A/cm²和80°C运行时,衰减速率降低了三分之一。这些发现为实现低成本制氢提供了一种通用方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验