Suppr超能文献

机器人介导的力场中的运动适应与内部模型形成

Motor adaptation and internal model formation in a robot-mediated forcefield.

作者信息

Taga Myriam, Curci Annacarmen, Pizzamigglio Sara, Lacal Irene, Turner Duncan L, Fu Cynthia H Y

机构信息

School of Health, Sports and Bioscience, University of East London, London, UK.

Department of Computer Science, School of Architecture, Computing and Engineering, University of East London, London, UK.

出版信息

Psychoradiology. 2021 Jun 12;1(2):73-87. doi: 10.1093/psyrad/kkab007. eCollection 2021 Jun.

Abstract

BACKGROUND

Motor adaptation relies on error-based learning for accurate movements in changing environments. However, the neurophysiological mechanisms driving individual differences in performance are unclear. Transcranial magnetic stimulation (TMS)-evoked potential can provide a direct measure of cortical excitability.

OBJECTIVE

To investigate cortical excitability as a predictor of motor learning and motor adaptation in a robot-mediated forcefield.

METHODS

A group of 15 right-handed healthy participants (mean age 23 years) performed a robot-mediated forcefield perturbation task. There were two conditions: unperturbed non-adaptation and perturbed adaptation. TMS was applied in the resting state at baseline and following motor adaptation over the contralateral primary motor cortex (left M1). Electroencephalographic (EEG) activity was continuously recorded, and cortical excitability was measured by TMS-evoked potential (TEP). Motor learning was quantified by the motor learning index.

RESULTS

Larger error-related negativity (ERN) in fronto-central regions was associated with improved motor performance as measured by a reduction in trajectory errors. Baseline TEP N100 peak amplitude predicted motor learning ( = 0.005), which was significantly attenuated relative to baseline ( = 0.0018) following motor adaptation.

CONCLUSIONS

ERN reflected the formation of a predictive internal model adapted to the forcefield perturbation. Attenuation in TEP N100 amplitude reflected an increase in cortical excitability with motor adaptation reflecting neuroplastic changes in the sensorimotor cortex. TEP N100 is a potential biomarker for predicting the outcome in robot-mediated therapy and a mechanism to investigate psychomotor abnormalities in depression.

摘要

背景

运动适应依赖基于错误的学习,以便在不断变化的环境中准确运动。然而,驱动个体表现差异的神经生理机制尚不清楚。经颅磁刺激(TMS)诱发电位可直接测量皮质兴奋性。

目的

研究皮质兴奋性作为机器人介导的力场中运动学习和运动适应预测指标的情况。

方法

15名右利手健康参与者(平均年龄23岁)进行了机器人介导的力场扰动任务。有两种情况:无扰动非适应和有扰动适应。在基线静息状态下以及运动适应后,对健侧初级运动皮层(左侧M1)施加TMS。持续记录脑电图(EEG)活动,并通过TMS诱发电位(TEP)测量皮质兴奋性。通过运动学习指数对运动学习进行量化。

结果

额中央区域较大的错误相关负波(ERN)与运动表现改善相关,表现为轨迹误差减少。基线TEP N100峰振幅可预测运动学习(P = 0.005),运动适应后相对于基线显著衰减(P = 0.0018)。

结论

ERN反映了适应力场扰动的预测性内部模型的形成。TEP N100振幅衰减反映了随着运动适应皮质兴奋性增加,这反映了感觉运动皮层的神经可塑性变化。TEP N100是预测机器人介导治疗结果的潜在生物标志物,也是研究抑郁症精神运动异常的一种机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8c7/10917215/8ac8f85674cd/kkab007fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验