Suppr超能文献

聚合物工程通过微环境调控实现高线性容量纤维电极

Polymer Engineering Enables High Linear Capacity Fiber Electrodes by Microenvironment Regulation.

作者信息

Li Yuan, Wang Yibo, Liu Yan, Yan Fang, Zhu Zhenwei, Chen Xibang, Qiu Jingyi, Zhang Hao, Cao Gaoping

机构信息

Research Institute of Chemical Defense, Beijing, 100191, China.

School of Chemistry and Biological Engineering, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China.

出版信息

Adv Sci (Weinh). 2024 Jul;11(28):e2309461. doi: 10.1002/advs.202309461. Epub 2024 Apr 26.

Abstract

Unlike bulky and rigid traditional power systems, 1D fiber batteries possess appealing features such as flexibility and adaptability, which are promising for use in wearable electronic devices. However, the performance and energy density fiber batteries are limited by the contradiction between ionic transfer and robust structure of fiber electrodes. Herein, these problems are addressed via polymer engineering to regulate the microenvironment in electrodes, realizing high-linear-capacity thick fiber electrodes with excellent cycling performance. The porosity of the electrodes is regulated using polymer crosslink networks designed with various components, and lithium-ion transfer is optimized through ether-abundant polymer chains. Furthermore, reinforced covalent bonding with carbon nanotube networks is established based on the modified functional groups of polymer networks. The multiscale optimizations of the porous structure, ionic transportation, and covalent bonding network enhance the lithium-ion dynamics property and structural stability. Therefore, ultrahigh linear-capacity fiber electrodes (17.8 mAh m) can be fabricated on a large scale and exhibit excellent stability (92.8% after 800 cycles), demonstrating obvious superiority among the reported fiber electrodes. Moreover, this study highlights the high effectiveness of polymer regulation in fiber electrodes and offers new avenues for designing next-generation wearable energy-storage systems.

摘要

与笨重且刚性的传统电力系统不同,一维纤维电池具有诸如柔韧性和适应性等吸引人的特性,这使其在可穿戴电子设备中的应用前景广阔。然而,纤维电池的性能和能量密度受到纤维电极离子传输与坚固结构之间矛盾的限制。在此,通过聚合物工程解决这些问题,以调节电极中的微环境,实现具有优异循环性能的高线性容量厚纤维电极。使用由各种成分设计的聚合物交联网络来调节电极的孔隙率,并通过富含醚的聚合物链优化锂离子传输。此外,基于聚合物网络的改性官能团建立了与碳纳米管网络的增强共价键。多孔结构、离子传输和共价键网络的多尺度优化增强了锂离子动力学性能和结构稳定性。因此,可以大规模制造超高线性容量纤维电极(17.8 mAh/m),并表现出优异的稳定性(800次循环后为92.8%),在已报道的纤维电极中显示出明显优势。此外,本研究突出了聚合物调控在纤维电极中的高效性,并为设计下一代可穿戴储能系统提供了新途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf59/11267365/b51c2db8a9be/ADVS-11-2309461-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验