Suppr超能文献

利用机器学习从婴儿电子数据中进行自闭症谱系诊断的预测模型

A Prediction Model of Autism Spectrum Diagnosis from Well-Baby Electronic Data Using Machine Learning.

作者信息

Ben-Sasson Ayelet, Guedalia Joshua, Nativ Liat, Ilan Keren, Shaham Meirav, Gabis Lidia V

机构信息

Department of Occupational Therapy, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa 3498838, Israel.

Maccabi Healthcare Services, Tel-Aviv 6812509, Israel.

出版信息

Children (Basel). 2024 Apr 3;11(4):429. doi: 10.3390/children11040429.

Abstract

Early detection of autism spectrum disorder (ASD) is crucial for timely intervention, yet diagnosis typically occurs after age three. This study aimed to develop a machine learning model to predict ASD diagnosis using infants' electronic health records obtained through a national screening program and evaluate its accuracy. A retrospective cohort study analyzed health records of 780,610 children, including 1163 with ASD diagnoses. Data encompassed birth parameters, growth metrics, developmental milestones, and familial and post-natal variables from routine wellness visits within the first two years. Using a gradient boosting model with 3-fold cross-validation, 100 parameters predicted ASD diagnosis with an average area under the ROC curve of 0.86 (SD < 0.002). Feature importance was quantified using the Shapley Additive explanation tool. The model identified a high-risk group with a 4.3-fold higher ASD incidence (0.006) compared to the cohort (0.001). Key predictors included failing six milestones in language, social, and fine motor domains during the second year, male gender, parental developmental concerns, non-nursing, older maternal age, lower gestational age, and atypical growth percentiles. Machine learning algorithms capitalizing on preventative care electronic health records can facilitate ASD screening considering complex relations between familial and birth factors, post-natal growth, developmental parameters, and parent concern.

摘要

自闭症谱系障碍(ASD)的早期检测对于及时干预至关重要,但诊断通常在三岁以后进行。本研究旨在开发一种机器学习模型,以利用通过国家筛查计划获得的婴儿电子健康记录预测ASD诊断,并评估其准确性。一项回顾性队列研究分析了780,610名儿童的健康记录,其中包括1163名被诊断为ASD的儿童。数据包括出生参数、生长指标、发育里程碑以及头两年内常规健康检查中的家族和产后变量。使用具有3折交叉验证的梯度提升模型,100个参数预测ASD诊断的ROC曲线下平均面积为0.86(标准差<0.002)。使用Shapley加性解释工具对特征重要性进行量化。该模型确定了一个高风险组,其ASD发病率(0.006)是队列(0.001)的4.3倍。关键预测因素包括在第二年语言、社交和精细运动领域有六项里程碑未达标、男性、父母对发育的担忧、非母乳喂养、母亲年龄较大、孕周较低以及生长百分位数异常。利用预防性护理电子健康记录的机器学习算法,考虑到家族和出生因素、产后生长、发育参数以及父母担忧之间的复杂关系,有助于ASD筛查。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1bbc/11049145/d8e0f89559c5/children-11-00429-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验