Suppr超能文献

用于儿科CT分割的年龄编码对抗学习

Age Encoded Adversarial Learning for Pediatric CT Segmentation.

作者信息

Gheshlaghi Saba Heidari, Kan Chi Nok Enoch, Schmidt Taly Gilat, Ye Dong Hye

机构信息

Department of Computer Science, Marquette University, Milwaukee, WI 53233, USA.

Department of Electrical and Computer Engineering, Marquette University, Milwaukee, WI 53233, USA.

出版信息

Bioengineering (Basel). 2024 Mar 27;11(4):319. doi: 10.3390/bioengineering11040319.

Abstract

Organ segmentation from CT images is critical in the early diagnosis of diseases, progress monitoring, pre-operative planning, radiation therapy planning, and CT dose estimation. However, data limitation remains one of the main challenges in medical image segmentation tasks. This challenge is particularly huge in pediatric CT segmentation due to children's heightened sensitivity to radiation. In order to address this issue, we propose a novel segmentation framework with a built-in auxiliary classifier generative adversarial network (ACGAN) that conditions age, simultaneously generating additional features during training. The proposed conditional feature generation segmentation network (CFG-SegNet) was trained on a single loss function and used 2.5D segmentation batches. Our experiment was performed on a dataset with 359 subjects (180 male and 179 female) aged from 5 days to 16 years and a mean age of 7 years. CFG-SegNet achieved an average segmentation accuracy of 0.681 dice similarity coefficient (DSC) on the prostate, 0.619 DSC on the uterus, 0.912 DSC on the liver, and 0.832 DSC on the heart with four-fold cross-validation. We compared the segmentation accuracy of our proposed method with previously published U-Net results, and our network improved the segmentation accuracy by 2.7%, 2.6%, 2.8%, and 3.4% for the prostate, uterus, liver, and heart, respectively. The results indicate that our high-performing segmentation framework can more precisely segment organs when limited training images are available.

摘要

从CT图像中进行器官分割在疾病早期诊断、病情监测、术前规划、放射治疗规划以及CT剂量估计等方面至关重要。然而,数据限制仍然是医学图像分割任务中的主要挑战之一。由于儿童对辐射更为敏感,这一挑战在儿科CT分割中尤为巨大。为了解决这个问题,我们提出了一种新颖的分割框架,该框架内置辅助分类器生成对抗网络(ACGAN),它以年龄为条件,在训练过程中同时生成额外特征。所提出的条件特征生成分割网络(CFG-SegNet)基于单一损失函数进行训练,并使用2.5D分割批次。我们的实验是在一个包含359名受试者(180名男性和179名女性)的数据集上进行的,受试者年龄从5天到16岁不等,平均年龄为7岁。通过四倍交叉验证,CFG-SegNet在前列腺上的平均分割准确率为0.681骰子相似系数(DSC),在子宫上为0.619 DSC,在肝脏上为0.912 DSC,在心脏上为0.832 DSC。我们将我们提出的方法的分割准确率与先前发表的U-Net结果进行了比较,我们的网络在前列腺、子宫、肝脏和心脏的分割准确率上分别提高了2.7%、2.6%、2.8%和3.4%。结果表明,当可用训练图像有限时,我们的高性能分割框架能够更精确地分割器官。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20fb/11047738/3d87d99f4df1/bioengineering-11-00319-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验