Suppr超能文献

从神经科学视角审视脑电图情感识别

Review of EEG Affective Recognition with a Neuroscience Perspective.

作者信息

Lim Rosary Yuting, Lew Wai-Cheong Lincoln, Ang Kai Keng

机构信息

Institute for Infocomm Research, Agency for Science, Technology and Research, A*STAR, 1 Fusionopolis Way, #21-01 Connexis, Singapore 138632, Singapore.

School of Computer Science and Engineering, Nanyang Technological University, 50 Nanyang Ave., 32 Block N4 02a, Singapore 639798, Singapore.

出版信息

Brain Sci. 2024 Apr 8;14(4):364. doi: 10.3390/brainsci14040364.

Abstract

Emotions are a series of subconscious, fleeting, and sometimes elusive manifestations of the human innate system. They play crucial roles in everyday life-influencing the way we evaluate ourselves, our surroundings, and how we interact with our world. To date, there has been an abundance of research on the domains of neuroscience and affective computing, with experimental evidence and neural network models, respectively, to elucidate the neural circuitry involved in and neural correlates for emotion recognition. Recent advances in affective computing neural network models often relate closely to evidence and perspectives gathered from neuroscience to explain the models. Specifically, there has been growing interest in the area of EEG-based emotion recognition to adopt models based on the neural underpinnings of the processing, generation, and subsequent collection of EEG data. In this respect, our review focuses on providing neuroscientific evidence and perspectives to discuss how emotions potentially come forth as the product of neural activities occurring at the level of subcortical structures within the brain's emotional circuitry and the association with current affective computing models in recognizing emotions. Furthermore, we discuss whether such biologically inspired modeling is the solution to advance the field in EEG-based emotion recognition and beyond.

摘要

情绪是人类先天系统的一系列潜意识、短暂且有时难以捉摸的表现形式。它们在日常生活中发挥着至关重要的作用——影响我们对自己、周围环境的评价方式,以及我们与世界互动的方式。迄今为止,在神经科学和情感计算领域已有大量研究,分别有实验证据和神经网络模型来阐明与情绪识别相关的神经回路和神经关联。情感计算神经网络模型的最新进展往往与从神经科学收集的证据和观点密切相关,以解释这些模型。具体而言,基于脑电图(EEG)的情绪识别领域越来越受到关注,人们希望采用基于EEG数据处理、生成及后续采集的神经基础的模型。在这方面,我们的综述着重于提供神经科学证据和观点,以讨论情绪如何可能作为大脑情感回路中皮层下结构层面发生的神经活动的产物而产生,以及与当前情感计算模型在情绪识别方面的关联。此外,我们还讨论了这种受生物学启发的建模是否是推动基于EEG的情绪识别及其他领域发展的解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6eb/11048077/2ad9f194de11/brainsci-14-00364-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验