Suppr超能文献

庐山云雾茶与樱花间作响应中关键香气成分的表征

Characterization of Key Odorants in Lushan Yunwu Tea in Response to Intercropping with Flowering Cherry.

作者信息

Gao Yinxiang, Lei Zhiyong, Huang Jigang, Sun Yongming, Liu Shuang, Yao Liping, Liu Jiaxin, Liu Wenxin, Liu Yanan, Chen Yan

机构信息

Institute of Jiangxi Oil-Tea Camellia, Jiujiang University, Jiujiang 332005, China.

Jiujiang Agricultural Technology Extension Center, Jiujiang 332000, China.

出版信息

Foods. 2024 Apr 19;13(8):1252. doi: 10.3390/foods13081252.

Abstract

Lushan Yunwu tea (LSYWT) is a famous green tea in China. However, the effects of intercropping tea with flowering cherry on the overall aroma of tea have not been well understood. In this study, headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry (GC-MS) was used for analysis. A total of 54 volatile compounds from eight chemical classes were identified in tea samples from both the intercropping and pure-tea-plantation groups. Principal component analysis (PCA), orthogonal partial least-squares discriminant analysis (OPLS-DA), and odor activity value (OAV) methods combined with sensory evaluation identified cis-jasmone, nonanal, and linalool as the key aroma compounds in the intercropping group. Benzaldehyde, α-farnesene, and methyl benzene were identified as the main volatile compounds in the flowering cherry using headspace solid-phase microextraction/gas chromatography-mass spectrometry (HS-SPME/GC-MS). These findings will enrich the research on tea aroma chemistry and offer new insights into the product development and quality improvement of LSYWT.

摘要

庐山云雾茶是中国著名的绿茶。然而,茶树与樱花间作对茶叶整体香气的影响尚未得到充分了解。在本研究中,采用顶空固相微萃取(HS-SPME)结合气相色谱-质谱联用(GC-MS)进行分析。间作组和纯茶园组的茶叶样品中共鉴定出8个化学类别的54种挥发性化合物。主成分分析(PCA)、正交偏最小二乘判别分析(OPLS-DA)和气味活性值(OAV)方法结合感官评价确定了顺式茉莉酮、壬醛和芳樟醇为间作组的关键香气化合物。采用顶空固相微萃取/气相色谱-质谱联用(HS-SPME/GC-MS)法鉴定出樱花中的主要挥发性化合物为苯甲醛、α-法尼烯和甲基苯。这些发现将丰富茶叶香气化学的研究,并为庐山云雾茶的产品开发和品质提升提供新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c9c/11049266/f5782d2a006b/foods-13-01252-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验