Sarani Rad Fatemeh, Hendawi Rasha, Yang Xinyi, Li Juan
Computer Science Department, North Dakota State University, Fargo, ND 58105, USA.
J Pers Med. 2024 Mar 28;14(4):359. doi: 10.3390/jpm14040359.
Diabetes management requires constant monitoring and individualized adjustments. This study proposes a novel approach that leverages digital twins and personal health knowledge graphs (PHKGs) to revolutionize diabetes care. Our key contribution lies in developing a real-time, patient-centric digital twin framework built on PHKGs. This framework integrates data from diverse sources, adhering to HL7 standards and enabling seamless information access and exchange while ensuring high levels of accuracy in data representation and health insights. PHKGs offer a flexible and efficient format that supports various applications. As new knowledge about the patient becomes available, the PHKG can be easily extended to incorporate it, enhancing the precision and accuracy of the care provided. This dynamic approach fosters continuous improvement and facilitates the development of new applications. As a proof of concept, we have demonstrated the versatility of our digital twins by applying it to different use cases in diabetes management. These include predicting glucose levels, optimizing insulin dosage, providing personalized lifestyle recommendations, and visualizing health data. By enabling real-time, patient-specific care, this research paves the way for more precise and personalized healthcare interventions, potentially improving long-term diabetes management outcomes.
糖尿病管理需要持续监测和个性化调整。本研究提出了一种新颖的方法,即利用数字孪生和个人健康知识图谱(PHKGs)来彻底改变糖尿病护理。我们的关键贡献在于开发了一个基于PHKGs的实时、以患者为中心的数字孪生框架。该框架整合来自不同来源的数据,遵循HL7标准,实现无缝的信息访问和交换,同时确保数据表示和健康洞察的高度准确性。PHKGs提供了一种灵活高效的格式,支持各种应用。随着关于患者的新知识可用,PHKG可以轻松扩展以纳入这些知识,提高所提供护理的精确性和准确性。这种动态方法促进持续改进,并推动新应用的开发。作为概念验证,我们通过将数字孪生应用于糖尿病管理的不同用例,展示了其多功能性。这些用例包括预测血糖水平、优化胰岛素剂量、提供个性化生活方式建议以及可视化健康数据。通过实现实时、针对患者的护理,本研究为更精确和个性化的医疗干预铺平了道路,有可能改善糖尿病的长期管理效果。