Suppr超能文献

使用非增强CT影像组学和临床数据以及可解释的机器学习方法预测高血压性脑出血术后再出血

Predicting postoperative rehemorrhage in hypertensive intracerebral hemorrhage using noncontrast CT radiomics and clinical data with an interpretable machine learning approach.

作者信息

Wang Weigong, Dai Jinlong, Li Jibo, Du Xiangyang

机构信息

Department of Neurosurgery, Lu'an Hospital of Traditional Chinese Medicine, No. 76 Renmin Road, Jin'an District, Lu'an, 237000, Anhui, China.

出版信息

Sci Rep. 2024 Apr 27;14(1):9717. doi: 10.1038/s41598-024-60463-2.

Abstract

In hypertensive intracerebral hemorrhage (HICH) patients, while emergency surgeries effectively reduce intracranial pressure and hematoma volume, their significant risk of causing postoperative rehemorrhage necessitates early detection and management to improve patient prognosis. This study sought to develop and validate machine learning (ML) models leveraging clinical data and noncontrast CT radiomics to pinpoint patients at risk of postoperative rehemorrhage, equipping clinicians with an early detection tool for prompt intervention. The study conducted a retrospective analysis on 609 HICH patients, dividing them into training and external verification cohorts. These patients were categorized into groups with and without postoperative rehemorrhage. Radiomics features from noncontrast CT images were extracted, standardized, and employed to create several ML models. These models underwent internal validation using both radiomics and clinical data, with the best model's feature significance assessed via the Shapley additive explanations (SHAP) method, then externally validated. In the study of 609 patients, postoperative rehemorrhage rates were similar in the training (18.8%, 80/426) and external verification (17.5%, 32/183) cohorts. Six significant noncontrast CT radiomics features were identified, with the support vector machine (SVM) model outperforming others in both internal and external validations. SHAP analysis highlighted five critical predictors of postoperative rehemorrhage risk, encompassing three radiomics features from noncontrast CT and two clinical data indicators. This study highlights the effectiveness of an SVM model combining radiomics features from noncontrast CT and clinical parameters in predicting postoperative rehemorrhage among HICH patients. This approach enables timely and effective interventions, thereby improving patient outcomes.

摘要

在高血压性脑出血(HICH)患者中,尽管急诊手术能有效降低颅内压和血肿体积,但其术后再出血风险较高,因此需要早期检测和处理以改善患者预后。本研究旨在开发并验证利用临床数据和非增强CT影像组学来精准识别术后再出血风险患者的机器学习(ML)模型,为临床医生提供早期检测工具以便及时干预。该研究对609例HICH患者进行了回顾性分析,将其分为训练组和外部验证组。这些患者被分为有术后再出血和无术后再出血两组。从非增强CT图像中提取影像组学特征,进行标准化处理,并用于创建多个ML模型。这些模型使用影像组学和临床数据进行内部验证,通过Shapley加性解释(SHAP)方法评估最佳模型的特征重要性,然后进行外部验证。在对609例患者的研究中,训练组(18.8%,80/426)和外部验证组(17.5%,32/183)的术后再出血率相似。识别出六个显著的非增强CT影像组学特征,支持向量机(SVM)模型在内部和外部验证中均优于其他模型。SHAP分析突出了术后再出血风险的五个关键预测因素,包括三个来自非增强CT的影像组学特征和两个临床数据指标。本研究强调了结合非增强CT影像组学特征和临床参数的SVM模型在预测HICH患者术后再出血方面的有效性。这种方法能够实现及时有效的干预,从而改善患者结局。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f964/11055901/5b5a546d99f4/41598_2024_60463_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验