Laboratory of Biomechanical Orthopedics, Institute of Bioengineering, EPFL, Switzerland.
Laboratory of Biomechanical Orthopedics, Institute of Bioengineering, EPFL, Switzerland.
Osteoarthritis Cartilage. 2024 Aug;32(8):896-908. doi: 10.1016/j.joca.2024.04.008. Epub 2024 Apr 26.
During physical activities, chondrocytes experience coupled stimulation of hydrostatic pressure (HP) and a transient increase in temperature (T), with the latter varying within a physiological range from 32.5 °C to 38.7 °C. Previous short-term in vitro studies have demonstrated that the combined hydrostatic pressure-thermal (HP-T) stimuli more significantly enhance chondroinduction and chondroprotection of chondrocytes than isolated applications. Interestingly, this combined benefit is associated with a corresponding increase in HSP70 levels when HP and T are combined. The current study therefore explored the indispensable role of HSP70 in mediating the combined effects of HP-T stimuli on chondrocytes.
In this mid-long-term study of in vitro engineered cartilage constructs, we assessed chondrocyte responses to HP-T stimuli using customized bioreactor in standard and HSP70-inhibited cultures.
Surprisingly, under HSP70-inhibited conditions, the usually beneficial HP-T stimuli, especially its thermal component, exerted detrimental effects on chondrocyte homeostasis, showing a distinct and unfavorable shift in gene and protein expression patterns compared to non-HSP70-inhibited settings. Such effects were corroborated through mechanical testing and confirmed using a secondary cell source. A proteomic-based mechanistic analysis revealed a disruption in the balance between biosynthesis and fundamental cellular structural components in HSP70-inhibited conditions under HP-T stimuli.
Our results highlight the critical role of sufficient HSP70 induction in mediating the beneficial effects of coupled HP-T stimulation on chondrocytes. These findings help pave the way for new therapeutic approaches to enhance physiotherapy outcomes and potentially shed light on the elusive mechanisms underlying the onset of cartilage degeneration, a long-standing enigma in orthopedics.
在身体活动过程中,软骨细胞受到静水压力(HP)和温度(T)短暂升高的耦合刺激,后者在 32.5°C 至 38.7°C 的生理范围内变化。先前的短期体外研究表明,与单独应用相比,静水压力-热(HP-T)联合刺激更显著地增强了软骨细胞的软骨诱导和保护作用。有趣的是,当 HP 和 T 结合时,这种联合益处与 HSP70 水平的相应增加相关。因此,本研究探讨了 HSP70 在介导 HP-T 刺激对软骨细胞的联合作用中的不可或缺作用。
在这项体外工程软骨构建体的中-长期研究中,我们使用定制的生物反应器在标准和 HSP70 抑制培养物中评估了 HP-T 刺激对软骨细胞的反应。
令人惊讶的是,在 HSP70 抑制条件下,通常有益的 HP-T 刺激,特别是其热成分,对软骨细胞的内稳态产生了有害影响,与非 HSP70 抑制条件相比,基因和蛋白质表达模式表现出明显的不利转变。这些影响通过机械测试得到证实,并使用二次细胞来源得到证实。基于蛋白质组学的机制分析表明,在 HSP70 抑制条件下,HP-T 刺激下的生物合成和基本细胞结构成分之间的平衡被破坏。
我们的结果强调了充分诱导 HSP70 在介导 HP-T 联合刺激对软骨细胞的有益作用中的关键作用。这些发现为增强物理治疗效果的新治疗方法铺平了道路,并可能揭示了骨科领域长期存在的软骨退化发病机制的 elusive 机制。