Department of Population Health, NYU Grossman School of Medicine, New York, NY 10016, United States.
Brown University, Providence, RI 02912, United States.
J Am Med Inform Assoc. 2024 Sep 1;31(9):2002-2009. doi: 10.1093/jamia/ocae086.
To evaluate demographic biases in diagnostic accuracy and health advice between generative artificial intelligence (AI) (ChatGPT GPT-4) and traditional symptom checkers like WebMD.
Combination symptom and demographic vignettes were developed for 27 most common symptom complaints. Standardized prompts, written from a patient perspective, with varying demographic permutations of age, sex, and race/ethnicity were entered into ChatGPT (GPT-4) between July and August 2023. In total, 3 runs of 540 ChatGPT prompts were compared to the corresponding WebMD Symptom Checker output using a mixed-methods approach. In addition to diagnostic correctness, the associated text generated by ChatGPT was analyzed for readability (using Flesch-Kincaid Grade Level) and qualitative aspects like disclaimers and demographic tailoring.
ChatGPT matched WebMD in 91% of diagnoses, with a 24% top diagnosis match rate. Diagnostic accuracy was not significantly different across demographic groups, including age, race/ethnicity, and sex. ChatGPT's urgent care recommendations and demographic tailoring were presented significantly more to 75-year-olds versus 25-year-olds (P < .01) but were not statistically different among race/ethnicity and sex groups. The GPT text was suitable for college students, with no significant demographic variability.
The use of non-health-tailored generative AI, like ChatGPT, for simple symptom-checking functions provides comparable diagnostic accuracy to commercially available symptom checkers and does not demonstrate significant demographic bias in this setting. The text accompanying differential diagnoses, however, suggests demographic tailoring that could potentially introduce bias.
These results highlight the need for continued rigorous evaluation of AI-driven medical platforms, focusing on demographic biases to ensure equitable care.
评估生成式人工智能(ChatGPT GPT-4)与传统症状检查器(如 WebMD)之间在诊断准确性和健康建议方面的人口统计学偏差。
为 27 种最常见的症状抱怨开发了组合症状和人口统计学小插图。从患者角度编写的标准化提示,具有年龄、性别和种族/民族的各种人口统计学变化,于 2023 年 7 月至 8 月期间输入到 ChatGPT(GPT-4)中。总共比较了 3 次共 540 次 ChatGPT 提示与相应的 WebMD 症状检查器输出,使用混合方法。除了诊断正确性外,还分析了 ChatGPT 生成的相关文本的可读性(使用 Flesch-Kincaid 年级水平)和定性方面,如免责声明和人口统计学定制。
ChatGPT 在 91%的诊断中与 WebMD 匹配,最高诊断匹配率为 24%。诊断准确性在年龄、种族/民族和性别等人口统计学群体中没有显著差异。ChatGPT 的紧急护理建议和人口统计学定制更多地呈现给 75 岁的人,而不是 25 岁的人(P<.01),但在种族/民族和性别群体中没有统计学差异。GPT 文本适合大学生,没有明显的人口统计学差异。
使用非健康定制的生成式人工智能,如 ChatGPT,进行简单的症状检查功能可提供与商业可用症状检查器相当的诊断准确性,并且在这种情况下不存在显著的人口统计学偏差。然而,伴随鉴别诊断的文本表明存在潜在的人口统计学定制偏差,这可能会引入偏见。
这些结果强调需要继续对人工智能驱动的医疗平台进行严格评估,重点关注人口统计学偏差,以确保公平的护理。