Suppr超能文献

开发和验证针对到基层医疗就诊的 COVID-19 患者的住院风险预测模型。

Development and validation of a risk prediction model for hospital admission in COVID-19 patients presenting to primary care.

机构信息

Department of Epidemiology, Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, The Netherlands.

Department of Development and Regeneration, KU Leuven, Leuven, Belgium.

出版信息

Eur J Gen Pract. 2024 Dec;30(1):2339488. doi: 10.1080/13814788.2024.2339488. Epub 2024 Apr 29.

Abstract

BACKGROUND

There is a paucity of prognostic models for COVID-19 that are usable for in-office patient assessment in general practice (GP).

OBJECTIVES

To develop and validate a risk prediction model for hospital admission with readily available predictors.

METHODS

A retrospective cohort study linking GP records from 8 COVID-19 centres and 55 general practices in the Netherlands to hospital admission records. The development cohort spanned March to June 2020, the validation cohort March to June 2021. The primary outcome was hospital admission within 14 days. We used geographic leave-region-out cross-validation in the development cohort and temporal validation in the validation cohort.

RESULTS

In the development cohort, 4,806 adult patients with COVID-19 consulted their GP (median age 56, 56% female); in the validation cohort 830 patients did (median age 56, 52% female). In the development and validation cohort respectively, 292 (6.1%) and 126 (15.2%) were admitted to the hospital within 14 days, respectively. A logistic regression model based on sex, smoking, symptoms, vital signs and comorbidities predicted hospital admission with a c-index of 0.84 (95% CI 0.83 to 0.86) at geographic cross-validation and 0.79 (95% CI 0.74 to 0.83) at temporal validation, and was reasonably well calibrated (intercept -0.08, 95% CI -0.98 to 0.52, slope 0.89, 95% CI 0.71 to 1.07 at geographic cross-validation and intercept 0.02, 95% CI -0.21 to 0.24, slope 0.82, 95% CI 0.64 to 1.00 at temporal validation).

CONCLUSION

We derived a risk model using readily available variables at GP assessment to predict hospital admission for COVID-19. It performed accurately across regions and waves. Further validation on cohorts with acquired immunity and newer SARS-CoV-2 variants is recommended.

摘要

背景

目前缺乏可用于普通诊所(GP)门诊患者评估的 COVID-19 预后模型。

目的

开发并验证一种使用易于获得的预测指标预测住院的风险预测模型。

方法

这是一项回顾性队列研究,将来自荷兰 8 个 COVID-19 中心和 55 家普通诊所的 GP 记录与住院记录相关联。该研究的开发队列跨越 2020 年 3 月至 6 月,验证队列跨越 2021 年 3 月至 6 月。主要结局是 14 天内住院。我们在开发队列中使用地理区域外留一验证,并在验证队列中进行时间验证。

结果

在开发队列中,4806 名成年 COVID-19 患者咨询了他们的 GP(中位年龄 56 岁,56%为女性);在验证队列中,有 830 名患者进行了咨询(中位年龄 56 岁,52%为女性)。在开发和验证队列中,分别有 292 名(6.1%)和 126 名(15.2%)患者在 14 天内住院。基于性别、吸烟、症状、生命体征和合并症的逻辑回归模型在地理交叉验证时预测住院的 C 指数为 0.84(95%CI 0.83 至 0.86),在时间验证时为 0.79(95%CI 0.74 至 0.83),并且具有较好的校准度(截距-0.08,95%CI-0.98 至 0.52,斜率 0.89,95%CI 0.71 至 1.07 在地理交叉验证,截距 0.02,95%CI-0.21 至 0.24,斜率 0.82,95%CI 0.64 至 1.00 在时间验证)。

结论

我们使用 GP 评估时易于获得的变量开发了一种预测 COVID-19 住院的风险模型。该模型在不同地区和不同波次均具有较好的准确性。建议在具有获得性免疫和新型 SARS-CoV-2 变异的队列中进一步验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2837/11060008/598b157535c8/IGEN_A_2339488_F0001_C.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验