Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France, Jouy-en-Josas, France.
Aix Marseille Univ., CEA, CNRS, BIAM, Saint Paul-Lez-Durance, France.
mBio. 2024 Jun 12;15(6):e0023024. doi: 10.1128/mbio.00230-24. Epub 2024 Apr 29.
Strict management of intracellular heme pools, which are both toxic and beneficial, is crucial for bacterial survival during infection. The human pathogen uses a two-component heme sensing system (HssRS), which counteracts environmental heme toxicity by triggering expression of the efflux transporter HrtBA. The HssS heme sensor is a HisKA-type histidine kinase, characterized as a membrane-bound homodimer containing an extracellular sensor and a cytoplasmic conserved catalytic domain. To elucidate HssS heme-sensing mechanism, a structural simulation of the HssS dimer based on Alphafold2 was docked with heme. In this model, a heme-binding site is present in the HssS dimer between the membrane and extracellular domains. Heme is embedded in the membrane bilayer with its two protruding porphyrin propionates interacting with two conserved Arg94 and Arg163 that are located extracellularly. Single substitutions of these arginines and two highly conserved phenylalanines, Phe25 and Phe128, in the predicted hydrophobic pocket limited the ability of HssS to induce HrtBA synthesis. Combination of the four substitutions abolished HssS activation. Wild-type (WT) HssS copurified with heme from whereas heme binding was strongly attenuated in the variants. This study gives evidence that exogenous heme interacts with HssS at the membrane/extracellular interface to initiate HssS activation and induce HrtBA-mediated heme extrusion from the membrane. This "gatekeeper" mechanism could limit intracellular diffusion of exogenous heme in and may serve as a paradigm for how efflux transporters control detoxification of exogenous hydrophobic stressors.IMPORTANCEIn the host blood, pathogenic bacteria are exposed to the red pigment heme that concentrates in their lipid membranes, generating cytotoxicity. To overcome heme toxicity, expresses a membrane sensor protein, HssS. Activation of HssS by heme triggers a phosphotransfer mechanism leading to the expression of a heme efflux system, HrtBA. This detoxification system prevents intracellular accumulation of heme. Our structural and functional data reveal a heme-binding hydrophobic cavity in HssS within the transmembrane domains (TM) helices at the interface with the extracellular domain. This structural pocket is important for the function of HssS as a heme sensor. Our findings provide a new basis for the elucidation of pathogen-sensing mechanisms as a prerequisite to the discovery of inhibitors.
严格控制细胞内血红素池,血红素既有毒性又有益处,这对感染期间细菌的生存至关重要。人类病原体 利用双组分血红素感应系统 (HssRS),通过触发外排转运蛋白 HrtBA 的表达来抵抗环境血红素毒性。HssS 血红素传感器是一种 HisKA 型组氨酸激酶,其特征为包含一个细胞外传感器和一个细胞质保守催化结构域的膜结合同源二聚体。为了阐明 HssS 血红素感应机制,基于 Alphafold2 的 HssS 二聚体结构模拟与血红素对接。在该模型中,血红素结合位点存在于膜和细胞外结构域之间的 HssS 二聚体中。血红素嵌入膜双层中,其两个突出的卟啉丙酸与位于细胞外的两个保守 Arg94 和 Arg163 相互作用。这些精氨酸和两个高度保守的苯丙氨酸(Phe25 和 Phe128)在预测的疏水性口袋中的单点取代限制了 HssS 诱导 HrtBA 合成的能力。四个取代物的组合消除了 HssS 的激活。野生型 (WT) HssS 与 中的血红素共纯化,而血红素结合在变体中受到强烈抑制。这项研究表明,外源性血红素与膜/细胞外界面的 HssS 相互作用,以启动 HssS 激活并诱导 HrtBA 介导的血红素从膜中排出。这种“守门员”机制可以限制 中内源性血红素的扩散,并可能成为外排转运蛋白控制细胞外疏水性应激物解毒的范例。
意义
在宿主血液中,病原菌暴露于集中在其脂质膜中的红色色素血红素,从而产生细胞毒性。为了克服血红素毒性, 表达一种膜传感器蛋白 HssS。血红素对 HssS 的激活触发磷酸转移机制,导致血红素外排系统 HrtBA 的表达。这种解毒系统可防止细胞内血红素积累。我们的结构和功能数据揭示了 HssS 中位于跨膜结构域 (TM) 螺旋与细胞外结构域界面处的血红素结合疏水性腔。这个结构口袋对于 HssS 作为血红素传感器的功能很重要。我们的发现为病原体感应机制的阐明提供了新的依据,这是发现抑制剂的前提。