LAQV,REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, Porto 4169-007, Portugal.
Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, Antwerp 2000, Belgium.
J Chem Inf Model. 2024 May 27;64(10):4218-4230. doi: 10.1021/acs.jcim.4c00301. Epub 2024 Apr 29.
Due to its detrimental impact on human health and the environment, regulations demand ultralow sulfur levels on fossil fuels, in particular in diesel. However, current desulfurization techniques are expensive and cannot efficiently remove heteroaromatic sulfur compounds, which are abundant in crude oil and concentrate in the diesel fraction after distillation. Biodesulfurization the four enzymes of the metabolic 4S pathway of the bacterium (DszA-D) is a possible solution. However, the 4S pathway needs to operate at least 500 times faster for industrial applicability, a goal currently pursued through enzyme engineering. In this work, we unveil the catalytic mechanism of the flavin monooxygenase DszA. Surprisingly, we found that this enzyme follows a recently proposed atypical mechanism that passes through the formation of an NOOH intermediate at the side of the cofactor, aided by a well-defined, predominantly hydrophobic O pocket. Besides clarifying the unusual chemical mechanism of the complex DszA enzyme, with obvious implications for understanding the puzzling chemistry of flavin-mediated catalysis, the result is crucial for the rational engineering of DszA, contributing to making biodesulfurization attractive for the oil refining industry.
由于其对人类健康和环境的有害影响,法规要求化石燃料(尤其是柴油)的硫含量超低。然而,目前的脱硫技术成本高昂,并且不能有效地去除杂环硫化合物,这些化合物在原油中含量丰富,在蒸馏后集中在柴油馏分中。生物脱硫是解决这一问题的一种可能方案。细菌代谢 4S 途径中的四种酶(DszA-D)就是一个很好的例子。然而,为了实现工业应用,4S 途径需要至少快 500 倍,这一目标目前通过酶工程来实现。在这项工作中,我们揭示了黄素单加氧酶 DszA 的催化机制。令人惊讶的是,我们发现该酶遵循一种最近提出的非典型机制,该机制通过在辅因子的侧面形成一个 NOOH 中间体来辅助,这得益于一个明确的、主要是疏水性的 O 口袋。除了阐明复杂的 DszA 酶不寻常的化学机制外,这对理解黄素介导催化的令人困惑的化学具有明显的意义,该结果对于 DszA 的合理工程至关重要,有助于使生物脱硫技术对炼油工业具有吸引力。