College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716, China.
Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, 400715, China.
BMC Genomics. 2024 Apr 29;25(1):422. doi: 10.1186/s12864-024-10331-0.
Brasenia schreberi, a plant species traditionally utilized in Chinese medicine and cuisine, represents an early evolutionary stage among flowering plants (angiosperms). While the plastid genome of this species has been published, its mitochondrial genome (mitogenome) has not been extensively explored, with a notable absence of thorough comparative analyses of its organellar genomes. In our study, we had assembled the entire mitogenome of B. schreberi utilizing the sequencing data derived from both Illumina platform and Oxford Nanopore. The B. schreberi mitogenome mostly exists as six circular DNA molecules, with the largest being 628,257 base pairs (bp) and the smallest 110,220 bp, amounting to 1.49 megabases (Mb). Then we annotated the mitogenome of B. schreberi. The mitogenome encompasses a total of 71 genes: 40 of these are coding proteins genes (PCGs), 28 are genes for transfer RNA (tRNA), and the remaining 3 are genes for ribosomal RNA (rRNA). In the analysis of codon usage, we noted a unique codon preference specific to each amino acid. The most commonly used codons exhibited an average RSCU of 1.36, indicating a noticeable bias in codon selection. In the repeat sequence analysis, a total of 553 simple sequence repeats (SSRs) were identified, 1,822 dispersed repeats (comprising 1,015 forward and 807 palindromic repeats), and 608 long terminal repeats (LTRs). Additionally, in the analysis of homologous sequences between organelle genomes, we detected 38 homologous sequences derived from the plastid genome, each exceeding 500 bp, within the B. schreberi mitochondrial genome. Notably, ten tRNA genes (trnC-GCA, trnM-CAU, trnI-CAU, trnQ-UUG, trnN-GUU, trnT-GGU, trnW-CCA, trnA-UGC, trnI-GAU, and trnV-GAC) appear to have been completely transferred from the chloroplast to the mitogenome. Utilizing the Deepred-mt to predict the RNA editing sites in the mitogenome, we have identified 675 high-quality RNA editing sites in the 40 mitochondrial PCGs. In the final stage of our study, we performed an analysis of colinearity and inferred the phylogenetic relationship of B. schreberi with other angiosperms, utilizing the mitochondrial PCGs as a basis. The results showed that the non-coding regions of the B. schreberi mitogenome are characterized by an abundance of repetitive sequences and exogenous sequences, and B. schreberi is more closely related with Euryale ferox.
苦草,一种传统上被用于中药和烹饪的植物物种,代表了开花植物(被子植物)中的一个早期进化阶段。虽然该物种的质体基因组已经公布,但它的线粒体基因组(mitogenome)尚未得到广泛探索,其细胞器基因组也缺乏全面的比较分析。在我们的研究中,我们利用 Illumina 平台和 Oxford Nanopore 测序数据组装了苦草的整个线粒体基因组。苦草的线粒体基因组主要存在于六个圆形 DNA 分子中,最大的分子为 628,257 个碱基对(bp),最小的为 110,220 bp,总大小为 1.49 兆碱基对(Mb)。然后,我们对苦草的线粒体基因组进行了注释。该线粒体基因组共包含 71 个基因:其中 40 个是编码蛋白基因(PCGs),28 个是转移 RNA(tRNA)基因,其余 3 个是核糖体 RNA(rRNA)基因。在密码子使用分析中,我们注意到每个氨基酸都有一个独特的密码子偏好。最常用的密码子的平均 RSCU 为 1.36,表明密码子选择存在明显的偏向性。在重复序列分析中,共鉴定出 553 个简单重复序列(SSRs)、1,822 个散布重复序列(包括 1,015 个正向重复和 807 个回文重复)和 608 个长末端重复(LTRs)。此外,在细胞器基因组之间同源序列的分析中,我们在苦草的线粒体基因组中检测到 38 个源自质体基因组的同源序列,每个序列均超过 500 bp。值得注意的是,有 10 个 tRNA 基因(trnC-GCA、trnM-CAU、trnI-CAU、trnQ-UUG、trnN-GUU、trnT-GGU、trnW-CCA、trnA-UGC、trnI-GAU 和 trnV-GAC)似乎已完全从叶绿体转移到线粒体基因组中。利用 Deepred-mt 预测线粒体基因组中的 RNA 编辑位点,我们在 40 个线粒体 PCGs 中鉴定出 675 个高质量的 RNA 编辑位点。在研究的最后阶段,我们利用线粒体 PCGs 作为基础,对苦草与其他被子植物的系统发育关系进行了共线性分析和推断。结果表明,苦草线粒体基因组的非编码区富含重复序列和外源序列,与芡实属的亲缘关系更近。