Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska.
Department of Microbiology and Immunology, College of Medicine, Medical University of South Carolina, Charleston, South Carolina.
Cancer Res Commun. 2024 May 22;4(5):1328-1343. doi: 10.1158/2767-9764.CRC-24-0071.
Chronic lymphocytic leukemia (CLL) cell survival and growth is fueled by the induction of B-cell receptor (BCR) signaling within the tumor microenvironment (TME) driving activation of NFκB signaling and the unfolded protein response (UPR). Malignant cells have higher basal levels of UPR posing a unique therapeutic window to combat CLL cell growth using pharmacologic agents that induce accumulation of misfolded proteins. Frontline CLL therapeutics that directly target BCR signaling such as Bruton tyrosine kinase (BTK) inhibitors (e.g., ibrutinib) have enhanced patient survival. However, resistance mechanisms wherein tumor cells bypass BTK inhibition through acquired BTK mutations, and/or activation of alternative survival mechanisms have rendered ibrutinib ineffective, imposing the need for novel therapeutics. We evaluated SpiD3, a novel spirocyclic dimer, in CLL cell lines, patient-derived CLL samples, ibrutinib-resistant CLL cells, and in the Eµ-TCL1 mouse model. Our integrated multi-omics and functional analyses revealed BCR signaling, NFκB signaling, and endoplasmic reticulum stress among the top pathways modulated by SpiD3. This was accompanied by marked upregulation of the UPR and inhibition of global protein synthesis in CLL cell lines and patient-derived CLL cells. In ibrutinib-resistant CLL cells, SpiD3 retained its antileukemic effects, mirrored in reduced activation of key proliferative pathways (e.g., PRAS, ERK, MYC). Translationally, we observed reduced tumor burden in SpiD3-treated Eµ-TCL1 mice. Our findings reveal that SpiD3 exploits critical vulnerabilities in CLL cells including NFκB signaling and the UPR, culminating in profound antitumor properties independent of TME stimuli.
SpiD3 demonstrates cytotoxicity in CLL partially through inhibition of NFκB signaling independent of tumor-supportive stimuli. By inducing the accumulation of unfolded proteins, SpiD3 activates the UPR and hinders protein synthesis in CLL cells. Overall, SpiD3 exploits critical CLL vulnerabilities (i.e., the NFκB pathway and UPR) highlighting its use in drug-resistant CLL.
慢性淋巴细胞白血病(CLL)细胞的存活和生长是由肿瘤微环境(TME)中 B 细胞受体(BCR)信号的诱导驱动的,该信号激活 NFκB 信号和未折叠蛋白反应(UPR)。恶性细胞具有更高的 UPR 基础水平,这为使用诱导错误折叠蛋白积累的药物来对抗 CLL 细胞生长提供了独特的治疗窗口。直接靶向 BCR 信号的一线 CLL 治疗药物,如布鲁顿酪氨酸激酶(BTK)抑制剂(例如伊布替尼),提高了患者的生存率。然而,肿瘤细胞通过获得 BTK 突变和/或激活替代存活机制来绕过 BTK 抑制的耐药机制,使得伊布替尼无效,因此需要新的治疗方法。我们评估了 SpiD3,一种新型的螺环二聚体,在 CLL 细胞系、患者来源的 CLL 样本、伊布替尼耐药的 CLL 细胞以及 Eµ-TCL1 小鼠模型中的作用。我们的综合多组学和功能分析显示,BCR 信号、NFκB 信号和内质网应激是 SpiD3 调节的最重要的途径之一。这伴随着 CLL 细胞系和患者来源的 CLL 细胞中 UPR 的显著上调和全局蛋白质合成的抑制。在伊布替尼耐药的 CLL 细胞中,SpiD3 保留了其抗白血病作用,这反映在关键增殖途径(例如 PRAS、ERK、MYC)的活性降低。从翻译的角度来看,我们观察到 SpiD3 治疗的 Eµ-TCL1 小鼠肿瘤负担减少。我们的研究结果表明,SpiD3 利用了 CLL 细胞中的关键脆弱性,包括 NFκB 信号和 UPR,从而导致独立于 TME 刺激的显著抗肿瘤特性。
SpiD3 在 CLL 中表现出细胞毒性,部分是通过抑制 NFκB 信号而不依赖于肿瘤支持性刺激。通过诱导未折叠蛋白的积累,SpiD3 激活 UPR 并抑制 CLL 细胞中的蛋白质合成。总体而言,SpiD3 利用了 CLL 的关键脆弱性(即 NFκB 途径和 UPR),突出了其在耐药性 CLL 中的应用。