Suppr超能文献

基于 CT 的放射组学模型采用稳定性选择预测肾透明细胞癌的世界卫生组织/国际泌尿病理学会分级。

CT-based radiomics model using stability selection for predicting the World Health Organization/International Society of Urological Pathology grade of clear cell renal cell carcinoma.

机构信息

Nuclear Medicine Department, Center of PET/CT, Shenzhen Second People's Hospital, Shenzhen 518052, China.

School of Electronic and Communication Engineering, Shenzhen Polytechnic University, Shenzhen 518052, China.

出版信息

Br J Radiol. 2024 May 29;97(1158):1169-1179. doi: 10.1093/bjr/tqae078.

Abstract

OBJECTIVES

This study aimed to develop a model to predict World Health Organization/International Society of Urological Pathology (WHO/ISUP) low-grade or high-grade clear cell renal cell carcinoma (ccRCC) using 3D multiphase enhanced CT radiomics features (RFs).

METHODS

CT data of 138 low-grade and 60 high-grade ccRCC cases were included. RFs were extracted from four CT phases: non-contrast phase (NCP), corticomedullary phase, nephrographic phase, and excretory phase (EP). Models were developed using various combinations of RFs and subjected to cross-validation.

RESULTS

There were 107 RFs extracted from each phase of the CT images. The NCP-EP model had the best overall predictive value (AUC = 0.78), but did not significantly differ from that of the NCP model (AUC = 0.76). By considering the predictive ability of the model, the level of radiation exposure, and model simplicity, the overall best model was the Conventional image and clinical features (CICFs)-NCP model (AUC = 0.77; sensitivity 0.75, specificity 0.69, positive predictive value 0.85, negative predictive value 0.54, accuracy 0.73). The second-best model was the NCP model (AUC = 0.76).

CONCLUSIONS

Combining clinical features with unenhanced CT images of the kidneys seems to be optimal for prediction of WHO/ISUP grade of ccRCC. This noninvasive method may assist in guiding more accurate treatment decisions for ccRCC.

ADVANCES IN KNOWLEDGE

This study innovatively employed stability selection for RFs, enhancing model reliability. The CICFs-NCP model's simplicity and efficacy mark a significant advancement, offering a practical tool for clinical decision-making in ccRCC management.

摘要

目的

本研究旨在建立一个使用 3D 多期增强 CT 放射组学特征(RFs)预测世界卫生组织/国际泌尿病理学会(WHO/ISUP)低级别或高级别透明细胞肾细胞癌(ccRCC)的模型。

方法

纳入 138 例低级别和 60 例高级别 ccRCC 病例的 CT 数据。从 4 个 CT 期(非增强期[NCP]、皮质期、肾实质期和排泄期[EP])提取 RFs。使用 RFs 的各种组合建立模型,并进行交叉验证。

结果

从 CT 图像的每个相位提取了 107 个 RFs。NCP-EP 模型具有最佳的整体预测价值(AUC=0.78),但与 NCP 模型(AUC=0.76)无显著差异。考虑到模型的预测能力、辐射暴露水平和模型的简单性,总体最佳模型是常规图像和临床特征(CICFs)-NCP 模型(AUC=0.77;灵敏度 0.75,特异性 0.69,阳性预测值 0.85,阴性预测值 0.54,准确性 0.73)。第二个最佳模型是 NCP 模型(AUC=0.76)。

结论

将临床特征与肾脏未增强 CT 图像相结合似乎是预测 ccRCC 的 WHO/ISUP 分级的最佳方法。这种非侵入性方法可能有助于指导 ccRCC 更准确的治疗决策。

知识进展

本研究创新性地采用了 RFs 的稳定性选择,提高了模型的可靠性。CICFs-NCP 模型的简单性和有效性是一个重大进展,为 ccRCC 管理中的临床决策提供了实用工具。

相似文献

2
[Establishment of nuclear grade prediction model for T1 clear cell renal cell carcinoma based on CT features and radiomics].
Zhonghua Zhong Liu Za Zhi. 2025 Feb 23;47(2):168-174. doi: 10.3760/cma.j.cn112152-20240615-00257.
6
Predicting the ISUP grade of clear cell renal cell carcinoma with multiparametric MR and multiphase CT radiomics.
Eur Radiol. 2020 May;30(5):2912-2921. doi: 10.1007/s00330-019-06601-1. Epub 2020 Jan 30.
8
Prediction of ISUP grading of clear cell renal cell carcinoma using support vector machine model based on CT images.
Medicine (Baltimore). 2019 Apr;98(14):e15022. doi: 10.1097/MD.0000000000015022.

本文引用的文献

1
CT-based transformer model for non-invasively predicting the Fuhrman nuclear grade of clear cell renal cell carcinoma.
Front Oncol. 2022 Sep 28;12:961779. doi: 10.3389/fonc.2022.961779. eCollection 2022.
2
CT-based radiomics stratification of tumor grade and TNM stage of clear cell renal cell carcinoma.
Eur Radiol. 2022 Apr;32(4):2552-2563. doi: 10.1007/s00330-021-08344-4. Epub 2021 Nov 10.
4
CT-based multi-phase Radiomic models for differentiating clear cell renal cell carcinoma.
Cancer Imaging. 2021 Jun 23;21(1):42. doi: 10.1186/s40644-021-00412-8.
6
Development and External Validation of Radiomics Approach for Nuclear Grading in Clear Cell Renal Cell Carcinoma.
Ann Surg Oncol. 2020 Oct;27(10):4057-4065. doi: 10.1245/s10434-020-08255-6. Epub 2020 May 18.
7
Predicting the ISUP grade of clear cell renal cell carcinoma with multiparametric MR and multiphase CT radiomics.
Eur Radiol. 2020 May;30(5):2912-2921. doi: 10.1007/s00330-019-06601-1. Epub 2020 Jan 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验