Suppr超能文献

有向无环图上的平滑嵌套测试

Smoothed Nested Testing on Directed Acyclic Graphs.

作者信息

Loper J H, Lei L, Fithian W, Tansey W

机构信息

Department of Neuroscience, Columbia University, 716 Jerome L. Greene Building, New York, New York 10025, U.S.A.

Department of Statistics, Stanford University, Sequoia Hall, Palo Alto, California 94305, U.S.A.

出版信息

Biometrika. 2022 Jun;109(2):457-471. doi: 10.1093/biomet/asab041. Epub 2021 Jul 2.

Abstract

We consider the problem of multiple hypothesis testing when there is a logical nested structure to the hypotheses. When one hypothesis is nested inside another, the outer hypothesis must be false if the inner hypothesis is false. We model the nested structure as a directed acyclic graph, including chain and tree graphs as special cases. Each node in the graph is a hypothesis and rejecting a node requires also rejecting all of its ancestors. We propose a general framework for adjusting node-level test statistics using the known logical constraints. Within this framework, we study a smoothing procedure that combines each node with all of its descendants to form a more powerful statistic. We prove a broad class of smoothing strategies can be used with existing selection procedures to control the familywise error rate, false discovery exceedance rate, or false discovery rate, so long as the original test statistics are independent under the null. When the null statistics are not independent but are derived from positively-correlated normal observations, we prove control for all three error rates when the smoothing method is arithmetic averaging of the observations. Simulations and an application to a real biology dataset demonstrate that smoothing leads to substantial power gains.

摘要

当假设存在逻辑嵌套结构时,我们考虑多重假设检验的问题。当一个假设嵌套在另一个假设之中时,如果内部假设为假,那么外部假设必定为假。我们将嵌套结构建模为有向无环图,链图和树图作为特殊情况包含在内。图中的每个节点都是一个假设,拒绝一个节点也需要拒绝它的所有祖先节点。我们提出了一个使用已知逻辑约束来调整节点级检验统计量的通用框架。在此框架内,我们研究一种平滑程序,该程序将每个节点与其所有后代节点相结合,以形成一个更强大的统计量。我们证明,只要原检验统计量在原假设下是独立的,那么一类广泛的平滑策略可与现有的选择程序一起使用,以控制族系错误率、错误发现超标率或错误发现率。当原假设统计量不独立但源自正相关的正态观测值时,我们证明当平滑方法是观测值的算术平均时,可控制所有三种错误率。模拟以及对一个真实生物学数据集的应用表明,平滑会带来显著的功效提升。

相似文献

1
Smoothed Nested Testing on Directed Acyclic Graphs.有向无环图上的平滑嵌套测试
Biometrika. 2022 Jun;109(2):457-471. doi: 10.1093/biomet/asab041. Epub 2021 Jul 2.
3
Filtering the rejection set while preserving false discovery rate control.在保持错误发现率控制的同时过滤拒绝集。
J Am Stat Assoc. 2023;118(541):165-176. doi: 10.1080/01621459.2021.1920958. Epub 2021 Jun 1.
4
Online control of the familywise error rate.在线控制家族错误率。
Stat Methods Med Res. 2021 Apr;30(4):976-993. doi: 10.1177/0962280220983381. Epub 2021 Jan 7.
6
A practical two-sample test for weighted random graphs.加权随机图的一种实用双样本检验。
J Appl Stat. 2021 Feb 8;50(3):495-511. doi: 10.1080/02664763.2021.1884847. eCollection 2023.
9
Null-free False Discovery Rate Control Using Decoy Permutations.使用诱饵排列的无空值错误发现率控制
Acta Math Appl Sin. 2022;38(2):235-253. doi: 10.1007/s10255-022-1077-5. Epub 2022 Apr 9.

引用本文的文献

本文引用的文献

1
Hypotheses on a tree: new error rates and testing strategies.树上的假设:新的错误率和检验策略。
Biometrika. 2021 Sep;108(3):575-590. doi: 10.1093/biomet/asaa086. Epub 2020 Oct 14.
9
Genetic screens in human cells using the CRISPR-Cas9 system.利用 CRISPR-Cas9 系统在人类细胞中进行遗传筛选。
Science. 2014 Jan 3;343(6166):80-4. doi: 10.1126/science.1246981. Epub 2013 Dec 12.
10
Multiple testing on the directed acyclic graph of gene ontology.基因本体论有向无环图上的多重检验。
Bioinformatics. 2008 Feb 15;24(4):537-44. doi: 10.1093/bioinformatics/btm628. Epub 2008 Jan 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验