Suppr超能文献

利用乳酸杆菌属和芽孢杆菌属混合菌合成银纳米颗粒及其生长与抗菌活性。

Silver nanoparticles biosynthesis using mixture of Lactobacillus sp. and Bacillus sp. growth and their antibacterial activity.

作者信息

Al-Asbahi Morad G S S, Al-Ofiry Bashir A, Saad Fuad A A, Alnehia Adnan, Al-Gunaid Murad Q A

机构信息

Department of Biology, Faculty of Sciences, Sana'a University, 12081, Sana'a, Yemen.

Department of Biology, Faculty of Applied Sciences, Thamar University, 87246, Dhamar, Yemen.

出版信息

Sci Rep. 2024 May 3;14(1):10224. doi: 10.1038/s41598-024-59936-1.

Abstract

The biosynthesis of nanoparticles offers numerous advantages, including ease of production, cost-effectiveness, and environmental friendliness. In our research, we focused on the bioformation of silver nanoparticles (AgNPs) using a combination of Lactobacillus sp. and Bacillus sp. growth. These AgNPs were then evaluated for their biological activities against multidrug-resistant bacteria. Our study involved the isolation of Bacillus sp. from soil samples and Lactobacillus sp. from raw milk in Dhamar Governorate, Yemen. The synthesized AgNPs were characterized using various techniques such as UV-visible spectroscopy, X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM). The antibacterial properties of the AgNPs were assessed using the modified Kirby Bauer disk diffusion method against multidrug-resistant strains of Staphylococcus aureus and Pseudomonas aeruginosa. Our results demonstrated that the use of a bacterial mixture for biosynthesis led to faster and more effective production of AgNPs compared to using a single bacterium. The UV-visible spectra showed characteristic peaks indicative of silver nanoparticles, while XRD analysis confirmed the crystalline nature of the synthesized particles. FTIR results suggested the presence of capping proteins that contribute to the synthesis and stability of AgNPs. Furthermore, TEM images revealed the size and morphology of the AgNPs, which exhibited spherical shapes with sizes ranging from 4.65 to 22.8 nm. Notably, the antibacterial activity of the AgNPs was found to be more pronounced against Staphylococcus aureus than Pseudomonas aeruginosa, indicating the potential of these nanoparticles as effective antimicrobial agents. Overall, our study highlights the promising antibacterial properties of AgNPs synthesized by a mixture of Lactobacillus sp. and Bacillus sp. growth. Further research is warranted to explore the potential of utilizing different bacterial combinations for enhanced nanoparticle synthesis.

摘要

纳米颗粒的生物合成具有诸多优势,包括易于生产、成本效益高和环境友好等。在我们的研究中,我们专注于利用乳酸杆菌属和芽孢杆菌属的组合来生物合成银纳米颗粒(AgNPs)。然后对这些AgNPs针对多重耐药细菌的生物活性进行了评估。我们的研究涉及从也门达马尔省的土壤样本中分离芽孢杆菌属,从生牛奶中分离乳酸杆菌属。使用紫外可见光谱、X射线衍射(XRD)、傅里叶变换红外光谱(FTIR)和透射电子显微镜(TEM)等各种技术对合成的AgNPs进行了表征。使用改良的 Kirby Bauer 纸片扩散法评估了AgNPs对金黄色葡萄球菌和铜绿假单胞菌多重耐药菌株的抗菌性能。我们的结果表明,与使用单一细菌相比,使用细菌混合物进行生物合成能更快、更有效地生产AgNPs。紫外可见光谱显示出指示银纳米颗粒的特征峰,而XRD分析证实了合成颗粒的晶体性质。FTIR结果表明存在有助于AgNPs合成和稳定性的封端蛋白。此外,TEM图像揭示了AgNPs的尺寸和形态,其呈现出球形,尺寸范围为4.65至22.8纳米。值得注意的是,发现AgNPs对金黄色葡萄球菌的抗菌活性比对铜绿假单胞菌更明显,表明这些纳米颗粒作为有效抗菌剂的潜力。总体而言,我们的研究突出了由乳酸杆菌属和芽孢杆菌属组合合成的AgNPs具有的有前景的抗菌性能。有必要进行进一步研究以探索利用不同细菌组合增强纳米颗粒合成的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/591e/11068879/07c6e1df7c57/41598_2024_59936_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验