Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea.
Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, CA, USA.
Nat Cell Biol. 2024 Jun;26(6):903-916. doi: 10.1038/s41556-024-01415-w. Epub 2024 May 3.
Dynamic changes in mechanical microenvironments, such as cell crowding, regulate lineage fates as well as cell proliferation. Although regulatory mechanisms for contact inhibition of proliferation have been extensively studied, it remains unclear how cell crowding induces lineage specification. Here we found that a well-known oncogene, ETS variant transcription factor 4 (ETV4), serves as a molecular transducer that links mechanical microenvironments and gene expression. In a growing epithelium of human embryonic stem cells, cell crowding dynamics is translated into ETV4 expression, serving as a pre-pattern for future lineage fates. A switch-like ETV4 inactivation by cell crowding derepresses the potential for neuroectoderm differentiation in human embryonic stem cell epithelia. Mechanistically, cell crowding inactivates the integrin-actomyosin pathway and blocks the endocytosis of fibroblast growth factor receptors (FGFRs). The disrupted FGFR endocytosis induces a marked decrease in ETV4 protein stability through ERK inactivation. Mathematical modelling demonstrates that the dynamics of cell density in a growing human embryonic stem cell epithelium precisely determines the spatiotemporal ETV4 expression pattern and, consequently, the timing and geometry of lineage development. Our findings suggest that cell crowding dynamics in a stem cell epithelium drives spatiotemporal lineage specification using ETV4 as a key mechanical transducer.
力学微环境的动态变化,如细胞拥挤,调节谱系命运以及细胞增殖。尽管已有研究广泛探讨了细胞接触抑制增殖的调控机制,但细胞拥挤如何诱导谱系特化仍不清楚。我们发现,一种已知的癌基因 ETS 变体转录因子 4(ETV4)可作为一种分子转导器,将力学微环境和基因表达联系起来。在人胚胎干细胞的不断生长的上皮中,细胞拥挤的动力学被转化为 ETV4 的表达,作为未来谱系命运的预模式。细胞拥挤通过 ETV4 的失活,使人类胚胎干细胞上皮中神经外胚层分化的潜能去抑制。从机制上讲,细胞拥挤会使整合素肌动蛋白途径失活,并阻止成纤维细胞生长因子受体(FGFR)的内吞作用。FGFR 内吞作用的破坏通过 ERK 失活引起 ETV4 蛋白稳定性的显著下降。数学模型表明,生长中的人胚胎干细胞上皮中细胞密度的动力学精确地决定了 ETV4 表达模式的时空特征,从而决定了谱系发育的时间和几何形状。我们的研究结果表明,细胞拥挤动力学通过 ETV4 作为关键力学转导器驱动干细胞上皮的时空谱系特化。