Anand Gaurangi, Koniusz Piotr, Kumar Anupama, Golding Lisa A, Morgan Matthew J, Moghadam Peyman
Environment, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Dutton Park 4102, QLD, Australia.
Data61, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Black Mountain 2601, ACT, Australia.
J Hazard Mater. 2024 Jul 5;472:134456. doi: 10.1016/j.jhazmat.2024.134456. Epub 2024 Apr 29.
Exposure to toxic chemicals threatens species and ecosystems. This study introduces a novel approach using Graph Neural Networks (GNNs) to integrate aquatic toxicity data, providing an alternative to complement traditional in vivo ecotoxicity testing. This study pioneers the application of GNN in ecotoxicology by formulating the problem as a relation prediction task. GRAPE's key innovation lies in simultaneously modelling 444 aquatic species and 2826 chemicals within a graph, leveraging relations from existing datasets where informative species and chemical features are augmented to make informed predictions. Extensive evaluations demonstrate the superiority of GRAPE over Logistic Regression (LR) and Multi-Layer Perceptron (MLP) models, achieving remarkable improvements of up to a 30% increase in recall values. GRAPE consistently outperforms LR and MLP in predicting novel chemicals and new species. In particular, GRAPE showcases substantial enhancements in recall values, with improvements of ≥ 100% for novel chemicals and up to 13% for new species. Specifically, GRAPE correctly predicts the effects of novel chemicals (104 out of 126) and effects on new species (7 out of 8). Moreover, the study highlights the effectiveness of the proposed chemical features and induced network topology through GNN for accurately predicting metallic (74 out of 86) and organic (612 out of 674) chemicals, showcasing the broad applicability and robustness of the GRAPE model in ecotoxicological investigations. The code/data are provided at https://github.com/csiro-robotics/GRAPE.
接触有毒化学物质会威胁物种和生态系统。本研究引入了一种使用图神经网络(GNN)整合水生毒性数据的新方法,为补充传统的体内生态毒性测试提供了一种替代方案。本研究通过将该问题表述为关系预测任务,开创了GNN在生态毒理学中的应用。GRAPE的关键创新在于在一个图中同时对444种水生物种和2826种化学物质进行建模,利用现有数据集中的关系,其中信息丰富的物种和化学特征被增强以进行明智的预测。广泛的评估表明,GRAPE优于逻辑回归(LR)和多层感知器(MLP)模型,召回值显著提高,最高可达30%。在预测新化学物质和新物种方面,GRAPE始终优于LR和MLP。特别是,GRAPE在召回值方面有大幅提高,新化学物质的召回值提高≥100%,新物种的召回值提高高达13%。具体而言,GRAPE正确预测了新化学物质的影响(126种中的104种)和对新物种的影响(8种中的7种)。此外,该研究强调了通过GNN提出的化学特征和诱导网络拓扑结构在准确预测金属化学物质(86种中的74种)和有机化学物质(674种中的612种)方面的有效性,展示了GRAPE模型在生态毒理学研究中的广泛适用性和稳健性。代码/数据可在https://github.com/csiro-robotics/GRAPE获取。