Suppr超能文献

基于小波包特征和堆叠集成学习的局部场电位的 STN 定位。

STN localization using local field potentials based on wavelet packet features and stacking ensemble learning.

机构信息

Department of Electrical Engineering, Benha Faculty of Engineering, Benha University, Benha, Egypt.

First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.

出版信息

J Neurosci Methods. 2024 Jul;407:110156. doi: 10.1016/j.jneumeth.2024.110156. Epub 2024 May 3.

Abstract

BACKGROUND

DBS entails the insertion of an electrode into the patient brain, enabling Subthalamic nucleus (STN) stimulation. Accurate delineation of STN borders is a critical but time-consuming task, traditionally reliant on the neurosurgeon experience in deciphering the intricacies of microelectrode recording (MER). While clinical outcomes of MER have been satisfactory, they involve certain risks to patient safety. Recently, there has been a growing interest in exploring the potential of local field potentials (LFP) due to their correlation with the STN motor territory.

METHOD

A novel STN detection system, integrating LFP and wavelet packet transform (WPT) with stacking ensemble learning, is developed. Initial steps involve the inclusion of soft thresholding to increase robustness to LFP variability. Subsequently, non-linear WPT features are extracted. Finally, a unique ensemble model, comprising a dual-layer structure, is developed for STN localization. We harnessed the capabilities of support vector machine, Decision tree and k-Nearest Neighbor in conjunction with long short-term memory (LSTM) network. LSTM is pivotal for assigning adequate weights to every base model.

RESULTS

Results reveal that the proposed model achieved a remarkable accuracy and F1-score of 89.49% and 91.63%.

COMPARISON WITH EXISTING METHODS

Ensemble model demonstrated superior performance when compared to standalone base models and existing meta techniques.

CONCLUSION

This framework is envisioned to enhance the efficiency of DBS surgery and reduce the reliance on clinician experience for precise STN detection. This achievement is strategically significant to serve as an invaluable tool for refining the electrode trajectory, potentially replacing the current methodology based on MER.

摘要

背景

DBS 需要将电极插入患者大脑,从而实现对丘脑底核(STN)的刺激。准确描绘 STN 边界是一项至关重要但耗时的任务,传统上依赖于神经外科医生根据微电极记录(MER)的复杂性进行解读的经验。虽然 MER 的临床效果令人满意,但它们确实会给患者带来一定的安全风险。最近,由于 LFP 与 STN 运动区域具有相关性,因此人们越来越关注探索 LFP 的潜力。

方法

我们开发了一种新的 STN 检测系统,该系统将 LFP 和小波包变换(WPT)与堆叠集成学习相结合。最初的步骤包括采用软阈值处理来提高 LFP 变异性的稳健性。随后,提取非线性 WPT 特征。最后,开发了一种独特的集成模型,包含双层结构,用于 STN 定位。我们利用支持向量机、决策树和 KNN 以及长短期记忆(LSTM)网络的功能。LSTM 对于为每个基础模型分配适当的权重至关重要。

结果

结果表明,所提出的模型实现了出色的准确性和 F1 分数,分别为 89.49%和 91.63%。

与现有方法的比较

与独立的基础模型和现有的元技术相比,集成模型表现出更优的性能。

结论

该框架有望提高 DBS 手术的效率,并减少对临床医生经验的依赖,以实现精确的 STN 检测。这一成果具有重要的战略意义,有望成为一种宝贵的工具,用于优化电极轨迹,可能取代当前基于 MER 的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验