Univ Lyon, Univ Gustave Eiffel, LBMC UMR_T9406, Lyon F69622, France.
Clinical Research Unit, Médipôle Hôpital Mutualiste, Villeurbanne, France.
Gait Posture. 2024 Jun;111:182-184. doi: 10.1016/j.gaitpost.2024.04.036. Epub 2024 May 3.
To complement traditional clinical fall risk assessments, research is oriented towards adding real-life gait-related fall risk parameters (FRP) using inertial sensors fixed to a specific body position. While fixing the sensor position can facilitate data processing, it can reduce user compliance. A newly proposed step detection method, Smartstep, has been proven to be robust against sensor position and real-life challenges. Moreover, FRP based on step variability calculated from stride times (Standard deviation (SD), Coefficient of Variance (Cov), fractal exponent, and sample entropy of stride duration) proved to be useful to prospectively predict the fall risk.
To evaluate whether Smartstep is convenient for calculating FRP from different sensor placements.
29 elderly performed a 6-minute walking test with IMU placed on the waist and the wrist. FRP were computed from step-time estimated from Smartstep and compared to those obtained from foot-mounted inertial sensors: precision and recall of the step detection, Root mean square error (RMSE) and Intraclass Correlation Coefficient (ICC) of stride durations, and limits of agreement of FRP.
The step detection precision and recall were respectively 99.5% and 95.9% for the waist position, and 99.4% and 95.7% for the wrist position. The ICC and RMSE of stride duration were 0.91 and 54 ms respectively for both the waist and the hand position. The limits of agreement of Cov, SD, fractal exponent, and sample entropy of stride duration are respectively 2.15%, 25 ms, 0.3, 0.5 for the waist and 1.6%, 16 ms, 0.23, 0.4 for the hand.
Robust against the elderly's gait and different body locations, especially the wrist, this method can open doors toward ambulatory measurements of steps, and calculation of different discrete stride-related falling risk indicators.
为了补充传统的临床跌倒风险评估,研究方向是使用固定在特定身体位置的惯性传感器添加与现实生活相关的步态跌倒风险参数(FRP)。虽然固定传感器位置可以方便数据处理,但会降低用户的依从性。一种新提出的步检测方法 Smartstep 已被证明对传感器位置和现实生活中的挑战具有很强的鲁棒性。此外,基于从步时计算得出的步长变异性的 FRP(标准差(SD)、变异系数(Cov)、分形指数和步长持续时间的样本熵)已被证明有助于前瞻性预测跌倒风险。
评估 Smartstep 是否方便从不同的传感器位置计算 FRP。
29 名老年人在腰部和手腕上佩戴 IMU 进行 6 分钟步行测试。从 Smartstep 估计的步时计算 FRP,并将其与脚部安装的惯性传感器获得的 FRP 进行比较:步检测的精度和召回率、步长持续时间的均方根误差(RMSE)和组内相关系数(ICC)以及 FRP 的一致性界限。
腰部位置的步检测精度和召回率分别为 99.5%和 95.9%,手腕位置分别为 99.4%和 95.7%。步长持续时间的 ICC 和 RMSE 分别为 0.91 和 54 ms,腰部和手部位置相同。步长持续时间的 Cov、SD、分形指数和样本熵的一致性界限分别为腰部 2.15%、25 ms、0.3、0.5,手部 1.6%、16 ms、0.23、0.4。
该方法对老年人的步态和不同的身体位置具有很强的鲁棒性,特别是手腕,可以为步态的动态测量和不同离散的与步长相关的跌倒风险指标的计算开辟道路。