Suppr超能文献

酷工具:在 Python 中实现高分辨率 Hi-C 分析。

Cooltools: Enabling high-resolution Hi-C analysis in Python.

机构信息

Department of Genomics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America.

Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America.

出版信息

PLoS Comput Biol. 2024 May 6;20(5):e1012067. doi: 10.1371/journal.pcbi.1012067. eCollection 2024 May.

Abstract

Chromosome conformation capture (3C) technologies reveal the incredible complexity of genome organization. Maps of increasing size, depth, and resolution are now used to probe genome architecture across cell states, types, and organisms. Larger datasets add challenges at each step of computational analysis, from storage and memory constraints to researchers' time; however, analysis tools that meet these increased resource demands have not kept pace. Furthermore, existing tools offer limited support for customizing analysis for specific use cases or new biology. Here we introduce cooltools (https://github.com/open2c/cooltools), a suite of computational tools that enables flexible, scalable, and reproducible analysis of high-resolution contact frequency data. Cooltools leverages the widely-adopted cooler format which handles storage and access for high-resolution datasets. Cooltools provides a paired command line interface (CLI) and Python application programming interface (API), which respectively facilitate workflows on high-performance computing clusters and in interactive analysis environments. In short, cooltools enables the effective use of the latest and largest genome folding datasets.

摘要

染色体构象捕获(3C)技术揭示了基因组组织的令人难以置信的复杂性。现在,越来越大、越来越深、越来越分辨率的图谱被用于探测细胞状态、类型和生物体的基因组结构。更大的数据集在计算分析的每一步都增加了挑战,从存储和内存限制到研究人员的时间;然而,满足这些增加的资源需求的分析工具并没有跟上步伐。此外,现有的工具为针对特定用例或新生物学进行定制分析提供的支持有限。在这里,我们介绍 cooltools(https://github.com/open2c/cooltools),这是一套计算工具,可实现高分辨率接触频率数据的灵活、可扩展和可重复分析。Cooltools 利用广泛采用的 cooler 格式来处理高分辨率数据集的存储和访问。Cooltools 提供了一个配对的命令行接口(CLI)和 Python 应用程序编程接口(API),分别在高性能计算集群和交互式分析环境中促进工作流程。简而言之,cooltools 使最新和最大的基因组折叠数据集能够得到有效利用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99ef/11098495/d2e86f49a495/pcbi.1012067.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验