Department of Psychology, University of Milano-Bicocca, Milan, Italy.
NeuroMI, Milan Center for Neuroscience, Milan, Italy.
Behav Res Methods. 2024 Apr;56(4):3779-3793. doi: 10.3758/s13428-024-02425-0. Epub 2024 May 6.
The formation of false memories is one of the most widely studied topics in cognitive psychology. The Deese-Roediger-McDermott (DRM) paradigm is a powerful tool for investigating false memories and revealing the cognitive mechanisms subserving their formation. In this task, participants first memorize a list of words (encoding phase) and next have to indicate whether words presented in a new list were part of the initially memorized one (recognition phase). By employing DRM lists optimized to investigate semantic effects, previous studies highlighted a crucial role of semantic processes in false memory generation, showing that new words semantically related to the studied ones tend to be more erroneously recognized (compared to new words less semantically related). Despite the strengths of the DRM task, this paradigm faces a major limitation in list construction due to its reliance on human-based association norms, posing both practical and theoretical concerns. To address these issues, we developed the False Memory Generator (FMG), an automated and data-driven tool for generating DRM lists, which exploits similarity relationships between items populating a vector space. Here, we present FMG and demonstrate the validity of the lists generated in successfully replicating well-known semantic effects on false memory production. FMG potentially has broad applications by allowing for testing false memory production in domains that go well beyond the current possibilities, as it can be in principle applied to any vector space encoding properties related to word referents (e.g., lexical, orthographic, phonological, sensory, affective, etc.) or other type of stimuli (e.g., images, sounds, etc.).
虚假记忆的形成是认知心理学中研究最广泛的课题之一。DRM 范式是研究虚假记忆并揭示其形成认知机制的有力工具。在这项任务中,参与者首先记忆一组单词(编码阶段),然后必须判断新列表中呈现的单词是否是最初记忆的单词之一(识别阶段)。通过使用优化的 DRM 列表来研究语义效应,先前的研究强调了语义过程在虚假记忆生成中的关键作用,表明与学习单词语义相关的新单词更容易被错误识别(相比之下,与学习单词语义不太相关的新单词)。尽管 DRM 任务具有优势,但由于其依赖于基于人类的联想规范,该范式在列表构建方面面临着重大限制,这引发了实际和理论上的问题。为了解决这些问题,我们开发了虚假记忆生成器(FMG),这是一种自动的、数据驱动的生成 DRM 列表的工具,它利用了填充向量空间的项目之间的相似性关系。在这里,我们介绍了 FMG,并展示了所生成的列表在成功复制虚假记忆产生的已知语义效应方面的有效性。FMG 具有广泛的应用潜力,因为它可以在超越当前可能性的领域中测试虚假记忆的产生,因为它原则上可以应用于任何与词项相关的向量空间编码属性(例如,词汇、正字法、语音、感觉、情感等)或其他类型的刺激(例如,图像、声音等)。