Suppr超能文献

去除 Hi-C 实验中样品间的非期望变异。

Removing unwanted variation between samples in Hi-C experiments.

机构信息

McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.

Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltmore, MD 21205, USA.

出版信息

Brief Bioinform. 2024 Mar 27;25(3). doi: 10.1093/bib/bbae217.

Abstract

Hi-C data are commonly normalized using single sample processing methods, with focus on comparisons between regions within a given contact map. Here, we aim to compare contact maps across different samples. We demonstrate that unwanted variation, of likely technical origin, is present in Hi-C data with replicates from different individuals, and that properties of this unwanted variation change across the contact map. We present band-wise normalization and batch correction, a method for normalization and batch correction of Hi-C data and show that it substantially improves comparisons across samples, including in a quantitative trait loci analysis as well as differential enrichment across cell types.

摘要

Hi-C 数据通常使用单一样本处理方法进行标准化,重点是比较给定接触图谱内的区域。在这里,我们旨在比较不同样本的接触图谱。我们证明,来自不同个体的重复 Hi-C 数据中存在可能源于技术的非期望变异,并且这种非期望变异的性质在整个接触图谱中发生变化。我们提出了基于带的标准化和批次校正,这是一种用于 Hi-C 数据标准化和批次校正的方法,并表明它可以大大改善样本间的比较,包括在数量性状基因座分析以及跨细胞类型的差异富集中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9855/11074651/3df0de4e9185/bbae217f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验