Suppr超能文献

通过深度学习从射线轨迹预测声道中的水下声传播损失。

Predicting underwater acoustic transmission loss in the SOFAR channel from ray trajectories via deep learning.

作者信息

Wang Haitao, Peng Shiwei, He Qunyi, Zeng Xiangyang

机构信息

School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an, 710072,

出版信息

JASA Express Lett. 2024 May 1;4(5). doi: 10.1121/10.0025976.

Abstract

Predicting acoustic transmission loss in the SOFAR channel faces challenges, such as excessively complex algorithms and computationally intensive calculations in classical methods. To address these challenges, a deep learning-based underwater acoustic transmission loss prediction method is proposed. By properly training a U-net-type convolutional neural network, the method can provide an accurate mapping between ray trajectories and the transmission loss over the problem domain. Verifications are performed in a SOFAR channel with Munk's sound speed profile. The results suggest that the method has potential to be used as a fast predicting model without sacrificing accuracy.

摘要

预测深海声道中的声传播损失面临诸多挑战,例如传统方法中的算法过于复杂且计算量巨大。为应对这些挑战,提出了一种基于深度学习的水下声传播损失预测方法。通过对U-net型卷积神经网络进行适当训练,该方法能够在问题域上提供射线轨迹与传播损失之间的精确映射。在具有蒙克声速剖面的深海声道中进行了验证。结果表明,该方法有潜力在不牺牲准确性的情况下用作快速预测模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验