Core Contributor, Google DeepMind, London, UK.
Core Contributor, Isomorphic Labs, London, UK.
Nature. 2024 Jun;630(8016):493-500. doi: 10.1038/s41586-024-07487-w. Epub 2024 May 8.
The introduction of AlphaFold 2 has spurred a revolution in modelling the structure of proteins and their interactions, enabling a huge range of applications in protein modelling and design. Here we describe our AlphaFold 3 model with a substantially updated diffusion-based architecture that is capable of predicting the joint structure of complexes including proteins, nucleic acids, small molecules, ions and modified residues. The new AlphaFold model demonstrates substantially improved accuracy over many previous specialized tools: far greater accuracy for protein-ligand interactions compared with state-of-the-art docking tools, much higher accuracy for protein-nucleic acid interactions compared with nucleic-acid-specific predictors and substantially higher antibody-antigen prediction accuracy compared with AlphaFold-Multimer v.2.3. Together, these results show that high-accuracy modelling across biomolecular space is possible within a single unified deep-learning framework.
AlphaFold2 的推出推动了蛋白质结构及其相互作用建模的革命,为蛋白质建模和设计的广泛应用提供了可能。在这里,我们描述了我们的 AlphaFold3 模型,它具有经过实质性更新的基于扩散的架构,能够预测包括蛋白质、核酸、小分子、离子和修饰残基在内的复合物的联合结构。新的 AlphaFold 模型在许多以前的专业工具的基础上显著提高了准确性:与最先进的对接工具相比,对蛋白质-配体相互作用的准确性大大提高,与专门针对核酸的预测器相比,对蛋白质-核酸相互作用的准确性大大提高,与 AlphaFold-Multimer v2.3 相比,抗体-抗原预测的准确性大大提高。总之,这些结果表明,在单个统一的深度学习框架内,跨生物分子空间进行高精度建模是可能的。