Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438, Frankfurt am Main, Germany.
Department of Molecular Sociology, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438, Frankfurt am Main, Germany.
Nat Commun. 2024 May 11;15(1):3992. doi: 10.1038/s41467-024-47839-8.
Visual proteomics attempts to build atlases of the molecular content of cells but the automated annotation of cryo electron tomograms remains challenging. Template matching (TM) and methods based on machine learning detect structural signatures of macromolecules. However, their applicability remains limited in terms of both the abundance and size of the molecular targets. Here we show that the performance of TM is greatly improved by using template-specific search parameter optimization and by including higher-resolution information. We establish a TM pipeline with systematically tuned parameters for the automated, objective and comprehensive identification of structures with confidence 10 to 100-fold above the noise level. We demonstrate high-fidelity and high-confidence localizations of nuclear pore complexes, vaults, ribosomes, proteasomes, fatty acid synthases, lipid membranes and microtubules, and individual subunits inside crowded eukaryotic cells. We provide software tools for the generic implementation of our method that is broadly applicable towards realizing visual proteomics.
可视化蛋白质组学试图构建细胞分子内容的图谱,但冷冻电子断层图像的自动注释仍然具有挑战性。模板匹配(TM)和基于机器学习的方法可以检测大分子的结构特征。然而,就分子靶标数量和大小而言,它们的适用性仍然有限。在这里,我们表明,通过使用特定于模板的搜索参数优化并包含更高分辨率的信息,TM 的性能得到了极大的提高。我们建立了一个 TM 管道,该管道具有经过系统调整的参数,可用于自动、客观和全面地识别置信度比噪声水平高 10 到 100 倍的结构。我们演示了核孔复合物、穹顶、核糖体、蛋白酶体、脂肪酸合成酶、脂膜和微管以及拥挤真核细胞内的单个亚基的高保真度和高可信度定位。我们提供了用于通用实现我们的方法的软件工具,该方法广泛适用于实现可视化蛋白质组学。