Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany.
Institute of Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany.
Biomacromolecules. 2024 Jun 10;25(6):3724-3730. doi: 10.1021/acs.biomac.4c00288. Epub 2024 May 14.
A small series of copoly(α,l-glutamic acid/dl-allylglycine)s with the same chain length and allylglycine content (∼10 mol %) but different spatial distribution of allylglycine units was synthesized and subsequently glycosylated via thiol-ene chemistry. Dilute aqueous copolypeptide solutions (0.1 wt %, physiological saline) were analyzed by circular dichroism spectroscopy, dynamic light scattering, and cryogenic transmission electron microscopy. The copolypeptides adopted a random coil or α-helix conformation, depending on solution pH, and the glycosylated residues either distorted or enhanced the folding into an α-helix depending on their location and spatial distribution along the chain. However, regardless of their secondary structure and degree of charging, all partially glycosylated copolypeptides self-assembled into 3D spherical structures, supposedly driven by a hydrophilic effect promoting microphase separation into glucose-rich and glutamate-rich domains.
合成了一系列具有相同链长和丙氨酸含量(~10 mol%)但丙氨酸单元空间分布不同的共聚(α,l-谷氨酸/dl-烯丙基甘氨酸),并通过硫醇-烯反应进行了糖基化。通过圆二色性光谱、动态光散射和低温透射电子显微镜分析了稀水溶液共聚物溶液(0.1 wt%,生理盐水)。共聚物根据溶液 pH 采用无规卷曲或α-螺旋构象,糖基化残基根据其位置和沿链的空间分布,要么扭曲,要么增强折叠成α-螺旋。然而,无论其二级结构和荷电程度如何,所有部分糖基化的共聚物都自组装成 3D 球形结构,这可能是由亲水性效应驱动的微相分离成富含葡萄糖和谷氨酸的区域。