Xu Leitao, Chen Wei, Wang Cairong, Wu Wenjie, Yao Yelin, Huang Zhifeng, Wu Jingcheng, Yang Ming, Wu Yandong, Xie Dianke, Zou Yuqin, Wang Shuangyin
State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, China.
Natl Sci Rev. 2024 Apr 4;11(5):nwae134. doi: 10.1093/nsr/nwae134. eCollection 2024 May.
Electrocatalytic oxidation of alcohols using heterogeneous catalysts is a promising aqueous, energy-efficient and environmentally friendly approach, especially for coupling different alcohols to prolong the carbon chain via co-oxidation. Precisely regulating critical steps to tailor electrode materials and electrolyte composition is key to selectively coupling alcohols for targeted synthesis. However, selectively coupling different alcohols remains challenging due to the lack of effective catalyst and electrolyte design promoting specific pathways. Herein, we demonstrate a paired electrolysis strategy for combining anodic oxidative coupling of ethanol (EtOH) and benzyl alcohol (PhCHOH) to synthesize cinnamaldehyde (CAL) and cathodic ammonia production. The strategies involve: (i) utilizing the salt-out effect to balance selective oxidation and coupling rates; (ii) developing platinum-loaded nickel hydroxide electrocatalysts to accelerate intermediate coupling kinetics; (iii) introducing thermodynamically favorable nitrate reduction at the cathode to improve coupling selectivity by avoiding hydrogenation of products while generating valuable ammonia instead of hydrogen. We achieved 85% coupling selectivity and 278 μmol/h NH productive rate at 100 mA/cm with a low energy input (∼1.63 V). The membrane-free, low energy, scalable approach with a wide substrate scope highlights promising applications of this methodology. This work advances heterogeneous electrocatalytic synthesis through rational design principles that integrate anodic oxidative coupling with cathodic nitrate reduction reactions, having synergistic effects on efficiency and selectivity.
使用多相催化剂对醇进行电催化氧化是一种很有前景的水相、节能且环保的方法,特别是对于通过共氧化将不同的醇偶联以延长碳链而言。精确调控关键步骤以定制电极材料和电解质组成是选择性偶联醇以实现目标合成的关键。然而,由于缺乏促进特定途径的有效催化剂和电解质设计,选择性偶联不同的醇仍然具有挑战性。在此,我们展示了一种成对电解策略,用于将乙醇(EtOH)和苯甲醇(PhCHOH)的阳极氧化偶联合成肉桂醛(CAL)与阴极产氨相结合。这些策略包括:(i)利用盐析效应来平衡选择性氧化和偶联速率;(ii)开发负载铂的氢氧化镍电催化剂以加速中间偶联动力学;(iii)在阴极引入热力学上有利的硝酸盐还原,通过避免产物氢化同时生成有价值的氨而非氢气来提高偶联选择性。我们在100 mA/cm²的电流密度下,以低能量输入(~1.63 V)实现了85%的偶联选择性和278 μmol/h的产氨速率。这种无膜、低能量、可扩展且底物范围广泛的方法突出了该方法的潜在应用前景。这项工作通过合理的设计原则推动了多相电催化合成,该原则将阳极氧化偶联与阴极硝酸盐还原反应相结合,对效率和选择性具有协同作用。