Department of Mechanical Engineering, Rowan University, Glassboro, NJ 08028, USA.
Department of Mechanical Engineering, Rowan University, Glassboro, NJ 08028, USA.
Gait Posture. 2024 Jul;112:88-94. doi: 10.1016/j.gaitpost.2024.05.010. Epub 2024 May 13.
Intersegmental coordination between thigh, shank, and foot plays a crucial role in human gait, facilitating stable and efficient human walking. Limb elevation angles during the gait cycle form a planar manifold describes the by the planar covariation law, a recognized fundamental aspect of human locomotion.
How does the walking speed, age, BMI, and height, affect the size and orientation of the intersegmental coordination manifold and covariation plane?
This study introduces novel metrics for quantifying intersegmental coordination, including the mean radius of the manifold, rotation of the manifold about the origin, and the orientation of the plane with respect to the coordinate planes. A statistical investigation is conducted on a publicly available human walking dataset for subjects aged 19-67 years, walking at speeds between 0.18 and 2.3 m s to determine correlations of the proposed quantities. We used two sample t-test and ANOVA to find statistical significance of changes in the metrics with respect to gender and walking speed, respectively. Regression analysis was used to establish relationships between the introduced metrics and walking speed.
High correlations are observed between walking speed and the computed metrics, highlighting the sensitivity of these metrics to gait characteristics. Conversely, negligible correlations are found for demographic parameters like age, body mass index (BMI), and height. Male and female groups exhibit no practically significant differences in any of the considered metrics. Additionally, metrics tend to increase in magnitude as walking speed increases.
This study contributes numerical metrics to characterize ISC of lower limbs with respect to walking speed along with regression models to estimate these metrics and related kinematic quantities. These findings hold significance for enhancing clinical gait analysis, generating optimal walking trajectories for assistive devices, prosthetics, or rehabilitation, aiming to replicate natural gaits and improve the functionality of biomechanical devices.
大腿、小腿和足部之间的节段间协调在人类步态中起着至关重要的作用,有助于人类稳定高效地行走。步态周期中的肢体抬高角度形成一个平面流形,由平面协变规律描述,这是人类运动的一个公认的基本方面。
行走速度、年龄、BMI 和身高如何影响节段间协调流形和协变平面的大小和方向?
本研究提出了用于量化节段间协调的新指标,包括流形的平均半径、流形围绕原点的旋转以及平面相对于坐标平面的方向。对一个公开的人类行走数据集进行了统计研究,该数据集包含年龄在 19-67 岁之间、行走速度在 0.18 到 2.3m/s 之间的受试者,以确定所提出的量之间的相关性。我们使用双样本 t 检验和 ANOVA 分别确定了性别和行走速度对指标变化的统计学意义。回归分析用于建立引入的指标与行走速度之间的关系。
观察到行走速度与计算出的指标之间存在高度相关性,这突出了这些指标对步态特征的敏感性。相反,年龄、体重指数(BMI)和身高等人口统计学参数与这些指标的相关性可忽略不计。男性和女性组在任何考虑的指标上都没有表现出实际显著的差异。此外,随着行走速度的增加,指标的幅度趋于增加。
本研究为下肢的节段间协调提供了数值指标,以描述与行走速度的关系,同时还提供了回归模型来估计这些指标和相关运动学参数。这些发现对于增强临床步态分析、为辅助设备、假肢或康复生成最佳行走轨迹、旨在复制自然步态和提高生物力学设备的功能具有重要意义。