Suppr超能文献

一种综合框架,用于对与体重指数相关的 500 多个基因座中的基因进行优先级排序。

An integrative framework to prioritize genes in more than 500 loci associated with body mass index.

机构信息

The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Bristol Myers Squibb, Summit, NJ, USA.

Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, USA.

出版信息

Am J Hum Genet. 2024 Jun 6;111(6):1035-1046. doi: 10.1016/j.ajhg.2024.04.016. Epub 2024 May 15.

Abstract

Obesity is a major risk factor for a myriad of diseases, affecting >600 million people worldwide. Genome-wide association studies (GWASs) have identified hundreds of genetic variants that influence body mass index (BMI), a commonly used metric to assess obesity risk. Most variants are non-coding and likely act through regulating genes nearby. Here, we apply multiple computational methods to prioritize the likely causal gene(s) within each of the 536 previously reported GWAS-identified BMI-associated loci. We performed summary-data-based Mendelian randomization (SMR), FINEMAP, DEPICT, MAGMA, transcriptome-wide association studies (TWASs), mutation significance cutoff (MSC), polygenic priority score (PoPS), and the nearest gene strategy. Results of each method were weighted based on their success in identifying genes known to be implicated in obesity, ranking all prioritized genes according to a confidence score (minimum: 0; max: 28). We identified 292 high-scoring genes (≥11) in 264 loci, including genes known to play a role in body weight regulation (e.g., DGKI, ANKRD26, MC4R, LEPR, BDNF, GIPR, AKT3, KAT8, MTOR) and genes related to comorbidities (e.g., FGFR1, ISL1, TFAP2B, PARK2, TCF7L2, GSK3B). For most of the high-scoring genes, however, we found limited or no evidence for a role in obesity, including the top-scoring gene BPTF. Many of the top-scoring genes seem to act through a neuronal regulation of body weight, whereas others affect peripheral pathways, including circadian rhythm, insulin secretion, and glucose and carbohydrate homeostasis. The characterization of these likely causal genes can increase our understanding of the underlying biology and offer avenues to develop therapeutics for weight loss.

摘要

肥胖是多种疾病的主要危险因素,影响着全球超过 6 亿人。全基因组关联研究(GWAS)已经确定了数百个影响体重指数(BMI)的遗传变异,BMI 是评估肥胖风险的常用指标。大多数变异都是非编码的,可能通过调节附近的基因来发挥作用。在这里,我们应用多种计算方法来优先考虑之前报道的 536 个与 GWAS 相关的 BMI 关联位点中的每个位点的可能因果基因。我们进行了基于汇总数据的孟德尔随机化(SMR)、FINEMAP、DEPICT、MAGMA、全转录组关联研究(TWAS)、突变显著性截止值(MSC)、多基因优先级评分(PoPS)和最近基因策略。根据每种方法在识别已知与肥胖有关的基因方面的成功程度对结果进行加权,根据置信得分(最低:0;最高:28)对所有优先基因进行排序。我们在 264 个位点中确定了 292 个高分基因(≥11),包括已知在体重调节中起作用的基因(例如 DGKI、ANKRD26、MC4R、LEPR、BDNF、GIPR、AKT3、KAT8、MTOR)和与合并症相关的基因(例如 FGFR1、ISL1、TFAP2B、PARK2、TCF7L2、GSK3B)。然而,对于大多数高分基因,我们发现它们在肥胖中的作用有限或没有证据,包括得分最高的基因 BPTF。许多得分最高的基因似乎通过神经元调节体重起作用,而其他基因则影响外周途径,包括昼夜节律、胰岛素分泌以及葡萄糖和碳水化合物的稳态。这些可能的因果基因的特征可以增加我们对潜在生物学的理解,并为开发减肥疗法提供途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/53e9/11179420/a3641080db34/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验