School of Mathematics, Jilin University, Changchun, China.
Stat Med. 2024 May 20;43(11):2062-2082. doi: 10.1002/sim.10035. Epub 2024 Mar 12.
This paper discusses regression analysis of interval-censored failure time data arising from semiparametric transformation models in the presence of missing covariates. Although some methods have been developed for the problem, they either apply only to limited situations or may have some computational issues. Corresponding to these, we propose a new and unified two-step inference procedure that can be easily implemented using the existing or standard software. The proposed method makes use of a set of working models to extract partial information from incomplete observations and yields a consistent estimator of regression parameters assuming missing at random. An extensive simulation study is conducted and indicates that it performs well in practical situations. Finally, we apply the proposed approach to an Alzheimer's Disease study that motivated this study.
本文讨论了在缺失协变量的情况下,源于半参数变换模型的区间删失失效时间数据的回归分析。尽管已经开发了一些方法来解决这个问题,但它们要么只适用于有限的情况,要么可能存在一些计算问题。针对这些问题,我们提出了一种新的、统一的两步推断程序,可以使用现有的或标准软件轻松实现。所提出的方法利用一组工作模型从不完全观测中提取部分信息,并在假定随机缺失的情况下得到回归参数的一致估计。进行了广泛的模拟研究,结果表明它在实际情况下表现良好。最后,我们将所提出的方法应用于一项促使本研究的阿尔茨海默病研究。