Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK.
East Anglian Medical Genetics Service, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
J Neuromuscul Dis. 2024;11(4):767-775. doi: 10.3233/JND-240020.
The genetic diagnosis of mitochondrial disorders is complicated by its genetic and phenotypic complexity. Next generation sequencing techniques have much improved the diagnostic yield for these conditions. A cohort of individuals with multiple respiratory chain deficiencies, reported in the literature 10 years ago, had a diagnostic rate of 60% by whole exome sequencing (WES) but 40% remained undiagnosed.
We aimed to identify a genetic diagnosis by reanalysis of the WES data for the undiagnosed arm of this 10-year-old cohort of patients with suspected mitochondrial disorders.
The WES data was transferred and processed by the RD-Connect Genome-Phenome Analysis Platform (GPAP) using their standardized pipeline. Variant prioritisation was carried out on the RD-Connect GPAP.
Singleton WES data from 14 individuals was reanalysed. We identified a possible or likely genetic diagnosis in 8 patients (8/14, 57%). The variants identified were in a combination of mitochondrial DNA (n = 1, MT-TN), nuclear encoded mitochondrial genes (n = 2, PDHA1, and SUCLA2) and nuclear genes associated with nonmitochondrial disorders (n = 5, PNPLA2, CDC40, NBAS and SLC7A7). Variants in both the NBAS and CDC40 genes were established as disease causing after the original cohort was published. We increased the diagnostic yield for the original cohort by 15% without generating any further genomic data.
In the era of multiomics we highlight that reanalysis of existing WES data is a valid tool for generating additional diagnosis in patients with suspected mitochondrial disease, particularly when more time has passed to allow for new bioinformatic pipelines to emerge, for the development of new tools in variant interpretation aiding in reclassification of variants and the expansion of scientific knowledge on additional genes.
线粒体疾病的遗传诊断因其遗传和表型的复杂性而变得复杂。下一代测序技术大大提高了这些疾病的诊断率。10 年前文献中报道的一组患有多种呼吸链缺陷的个体,通过全外显子组测序(WES)的诊断率为 60%,但仍有 40%未被诊断。
我们旨在通过重新分析 10 年前怀疑患有线粒体疾病的这组患者中未确诊组的 WES 数据,以确定遗传诊断。
WES 数据通过 RD-Connect 基因组-表型分析平台(GPAP)传输和处理,使用其标准化的流程。RD-Connect GPAP 进行了变体优先级排序。
重新分析了 14 名个体的单 WES 数据。我们在 8 名患者(8/14,57%)中确定了可能或可能的遗传诊断。鉴定的变体存在于线粒体 DNA(n=1,MT-TN)、核编码线粒体基因(n=2,PDHA1 和 SUCLA2)和与非线粒体疾病相关的核基因(n=5,PNPLA2、CDC40、NBAS 和 SLC7A7)的组合中。原始队列发表后,NBAS 和 CDC40 基因中的变体被确定为致病原因。在没有生成任何额外基因组数据的情况下,我们将原始队列的诊断率提高了 15%。
在多组学时代,我们强调重新分析现有的 WES 数据是为疑似线粒体疾病患者生成额外诊断的有效工具,特别是当更多时间过去后,允许出现新的生物信息学管道,开发有助于重新分类变体的变体解释新工具以及扩展关于其他基因的科学知识。