Suppr超能文献

建模揭示了堆叠环组装中弱相互作用的强度。

Modeling reveals the strength of weak interactions in stacked-ring assembly.

机构信息

Department of Integrative Biology and Physiology, UCLA, Los Angeles, California; Institute for Quantitative and Computational Biosciences, UCLA, Los Angeles, California.

Department of Physics, University of Kansas, Lawrence, Kansas.

出版信息

Biophys J. 2024 Jul 2;123(13):1763-1780. doi: 10.1016/j.bpj.2024.05.015. Epub 2024 May 18.

Abstract

Cells employ many large macromolecular machines for the execution and regulation of processes that are vital for cell and organismal viability. Interestingly, cells cannot synthesize these machines as functioning units. Instead, cells synthesize the molecular parts that must then assemble into the functional complex. Many important machines, including chaperones such as GroEL and proteases such as the proteasome, comprise protein rings that are stacked on top of one another. While there is some experimental data regarding how stacked-ring complexes such as the proteasome self-assemble, a comprehensive understanding of the dynamics of stacked-ring assembly is currently lacking. Here, we developed a mathematical model of stacked-trimer assembly and performed an analysis of the assembly of the stacked homomeric trimer, which is the simplest stacked-ring architecture. We found that stacked rings are particularly susceptible to a form of kinetic trapping that we term "deadlock," in which the system gets stuck in a state where there are many large intermediates that are not the fully assembled structure but that cannot productively react. When interaction affinities are uniformly strong, deadlock severely limits assembly yield. We thus predicted that stacked rings would avoid situations where all interfaces in the structure have high affinity. Analysis of available crystal structures indicated that indeed the majority-if not all-of stacked trimers do not contain uniformly strong interactions. Finally, to better understand the origins of deadlock, we developed a formal pathway analysis and showed that, when all the binding affinities are strong, many of the possible pathways are utilized. In contrast, optimal assembly strategies utilize only a small number of pathways. Our work suggests that deadlock is a critical factor influencing the evolution of macromolecular machines and provides general principles for understanding the self-assembly efficiency of existing machines.

摘要

细胞利用许多大型的大分子机器来执行和调节对细胞和生物生存至关重要的过程。有趣的是,细胞不能将这些机器作为功能单元合成。相反,细胞合成的分子部分必须组装成功能复合物。许多重要的机器,包括分子伴侣(如 GroEL)和蛋白酶(如蛋白酶体),都由彼此堆叠的蛋白质环组成。虽然有一些关于堆叠环复合物(如蛋白酶体)如何自我组装的实验数据,但目前还缺乏对堆叠环组装动力学的全面理解。在这里,我们开发了一个堆叠三聚体组装的数学模型,并对最简单的堆叠环结构——同三聚体的组装进行了分析。我们发现,堆叠环特别容易受到一种我们称之为“死锁”的动力学捕获的影响,在这种情况下,系统会陷入一种状态,其中存在许多大的中间产物,它们不是完全组装的结构,但不能有效地反应。当相互作用亲和力均匀较强时,死锁会严重限制组装产率。因此,我们预测堆叠环会避免所有结构界面都具有高亲和力的情况。对现有晶体结构的分析表明,事实上,大多数(如果不是全部)堆叠三聚体确实不包含均匀较强的相互作用。最后,为了更好地理解死锁的起源,我们开发了一种形式途径分析,并表明,当所有的结合亲和力都很强时,许多可能的途径都被利用了。相比之下,最佳组装策略只利用了少数几条途径。我们的工作表明,死锁是影响大分子机器进化的一个关键因素,并为理解现有机器的自组装效率提供了一般原则。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/47a4/11267433/950fd159fc72/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验