Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany.
Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Klinik/Centrum, Charitéplatz 1, 10117, Berlin, Germany.
Nat Commun. 2024 May 20;15(1):4257. doi: 10.1038/s41467-024-48568-8.
The COVID-19 pandemic exposed a global deficiency of systematic, data-driven guidance to identify high-risk individuals. Here, we illustrate the utility of routinely recorded medical history to predict the risk for 1883 diseases across clinical specialties and support the rapid response to emerging health threats such as COVID-19. We developed a neural network to learn from health records of 502,460 UK Biobank. Importantly, we observed discriminative improvements over basic demographic predictors for 1774 (94.3%) endpoints. After transferring the unmodified risk models to the All of US cohort, we replicated these improvements for 1347 (89.8%) of 1500 investigated endpoints, demonstrating generalizability across healthcare systems and historically underrepresented groups. Ultimately, we showed how this approach could have been used to identify individuals vulnerable to severe COVID-19. Our study demonstrates the potential of medical history to support guidance for emerging pandemics by systematically estimating risk for thousands of diseases at once at minimal cost.
新冠疫情暴露出全球在系统性、数据驱动的指导方针方面的不足,无法识别高危个体。在这里,我们展示了常规记录的医疗史在预测临床各专业 1883 种疾病风险方面的效用,并支持对新冠等新出现的健康威胁做出快速反应。我们开发了一种神经网络,从 502460 名英国生物库的健康记录中进行学习。重要的是,我们观察到该神经网络在 1774 个(94.3%)终点上的表现明显优于基本人口统计学预测因子。在将未经修改的风险模型转移到 All of US 队列后,我们在 1500 个研究终点中的 1347 个(89.8%)中复制了这些改进,证明了该方法在不同医疗体系和历史上代表性不足的人群中的通用性。最终,我们展示了这种方法如何用于识别易患严重新冠的个体。我们的研究表明,医疗史具有通过系统地同时估计数千种疾病的风险,以最低的成本为新出现的大流行病提供指导的潜力。