Suppr超能文献

使用参数反应映射法测量肺功能的定量准确性:一项虚拟成像研究

Quantitative accuracy of lung function measurement using parametric response mapping: A virtual imaging study.

作者信息

Kavuri Amar, Ho Fong Chi, Ghojogh-Nejad Mobina, Sotoudeh-Paima Saman, Samei Ehsan, Segars W Paul, Abadi Ehsan

机构信息

Center for Virtual Imaging Trials, Department of Radiology, Duke University, United States.

出版信息

Proc SPIE Int Soc Opt Eng. 2024 Feb;12927. doi: 10.1117/12.3006833. Epub 2024 Apr 3.

Abstract

Parametric response mapping (PRM) is a voxel-based quantitative CT imaging biomarker that measures the severity of chronic obstructive pulmonary disease (COPD) by analyzing both inspiratory and expiratory CT scans. Although PRM-derived measurements have been shown to predict disease severity and phenotyping, their quantitative accuracy is impacted by the variability of scanner settings and patient conditions. The aim of this study was to evaluate the variability of PRM-based measurements due to the changes in the scanner types and configurations. We developed 10 human chest models with emphysema and air-trapping at end-inspiration and end-expiration states. These models were virtually imaged using a scanner-specific CT simulator (DukeSim) to create CT images at different acquisition settings for energy-integrating and photon-counting CT systems. The CT images were used to estimate PRM maps. The quantified measurements were compared with ground truth values to evaluate the deviations in the measurements. Results showed that PRM measurements varied with scanner type and configurations. The emphysema volume was overestimated by 3 ± 9.5 % (mean ± standard deviation) of the lung volume, and the functional small airway disease (fSAD) volume was underestimated by 7.5±19 % of the lung volume. PRM measurements were more accurate and precise when the acquired settings were photon-counting CT, higher dose, smoother kernel, and larger pixel size. This study demonstrates the development and utility of virtual imaging tools for systematic assessment of a quantitative biomarker accuracy.

摘要

参数反应映射(PRM)是一种基于体素的定量CT成像生物标志物,通过分析吸气和呼气CT扫描来测量慢性阻塞性肺疾病(COPD)的严重程度。尽管基于PRM的测量已被证明可预测疾病严重程度和表型,但它们的定量准确性受到扫描仪设置和患者状况变异性的影响。本研究的目的是评估由于扫描仪类型和配置的变化而导致的基于PRM测量的变异性。我们开发了10个具有肺气肿和吸气末及呼气末空气潴留的人体胸部模型。这些模型使用特定于扫描仪的CT模拟器(DukeSim)进行虚拟成像,以在不同采集设置下为能量积分CT系统和光子计数CT系统创建CT图像。CT图像用于估计PRM图。将量化测量结果与真实值进行比较,以评估测量中的偏差。结果表明,PRM测量随扫描仪类型和配置而变化。肺气肿体积被高估了肺体积的3±9.5%(平均值±标准差),功能性小气道疾病(fSAD)体积被低估了肺体积的7.5±19%。当采集设置为光子计数CT、更高剂量、更平滑的核和更大的像素大小时,PRM测量更准确和精确。本研究展示了虚拟成像工具在系统评估定量生物标志物准确性方面的开发和应用。

相似文献

1
Quantitative accuracy of lung function measurement using parametric response mapping: A virtual imaging study.
Proc SPIE Int Soc Opt Eng. 2024 Feb;12927. doi: 10.1117/12.3006833. Epub 2024 Apr 3.
4
The Impact of Sources of Variability on Parametric Response Mapping of Lung CT Scans.
Tomography. 2015 Sep;1(1):69-77. doi: 10.18383/j.tom.2015.00148.
5
Capturing COPD heterogeneity: anomaly detection and parametric response mapping comparison for phenotyping on chest computed tomography.
Front Med (Lausanne). 2024 Mar 1;11:1360706. doi: 10.3389/fmed.2024.1360706. eCollection 2024.
10
Association between Functional Small Airway Disease and FEV1 Decline in Chronic Obstructive Pulmonary Disease.
Am J Respir Crit Care Med. 2016 Jul 15;194(2):178-84. doi: 10.1164/rccm.201511-2219OC.

本文引用的文献

1
TotalSegmentator: Robust Segmentation of 104 Anatomic Structures in CT Images.
Radiol Artif Intell. 2023 Jul 5;5(5):e230024. doi: 10.1148/ryai.230024. eCollection 2023 Sep.
3
Task-based validation and application of a scanner-specific CT simulator using an anthropomorphic phantom.
Med Phys. 2022 Dec;49(12):7447-7457. doi: 10.1002/mp.15967. Epub 2022 Nov 12.
4
Development and Clinical Applications of a Virtual Imaging Framework for Optimizing Photon-counting CT.
Proc SPIE Int Soc Opt Eng. 2022 Feb-Mar;12031. doi: 10.1117/12.2612079. Epub 2022 Apr 4.
5
A scanner-specific framework for simulating CT images with tube current modulation.
Phys Med Biol. 2021 Sep 13;66(18). doi: 10.1088/1361-6560/ac2269.
6
Virtual clinical trials in medical imaging: a review.
J Med Imaging (Bellingham). 2020 Jul;7(4):042805. doi: 10.1117/1.JMI.7.4.042805. Epub 2020 Apr 11.
7
DukeSim: A Realistic, Rapid, and Scanner-Specific Simulation Framework in Computed Tomography.
IEEE Trans Med Imaging. 2019 Jun;38(6):1457-1465. doi: 10.1109/TMI.2018.2886530. Epub 2018 Dec 12.
9
Multi-Scale Deep Reinforcement Learning for Real-Time 3D-Landmark Detection in CT Scans.
IEEE Trans Pattern Anal Mach Intell. 2019 Jan;41(1):176-189. doi: 10.1109/TPAMI.2017.2782687. Epub 2017 Dec 12.
10
Modeling Lung Architecture in the XCAT Series of Phantoms: Physiologically Based Airways, Arteries and Veins.
IEEE Trans Med Imaging. 2018 Mar;37(3):693-702. doi: 10.1109/TMI.2017.2769640.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验