Mi Xuelong, Chen Alex Bo-Yuan, Duarte Daniela, Carey Erin, Taylor Charlotte R, Braaker Philipp N, Bright Mark, Almeida Rafael G, Lim Jing-Xuan, Ruetten Virginia M S, Zheng Wei, Wang Mengfan, Reitman Michael E, Wang Yizhi, Poskanzer Kira E, Lyons David A, Nimmerjahn Axel, Ahrens Misha B, Yu Guoqiang
Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, USA.
These authors contributed equally.
bioRxiv. 2024 Jun 1:2024.05.02.592259. doi: 10.1101/2024.05.02.592259.
Optical recording of intricate molecular dynamics is becoming an indispensable technique for biological studies, accelerated by the development of new or improved biosensors and microscopy technology. This creates major computational challenges to extract and quantify biologically meaningful spatiotemporal patterns embedded within complex and rich data sources, many of which cannot be captured with existing methods. Here, we introduce Activity Quantification and Analysis (AQuA2), a fast, accurate, and versatile data analysis platform built upon advanced machine learning techniques. It decomposes complex live imaging-based datasets into elementary signaling events, allowing accurate and unbiased quantification of molecular activities and identification of consensus functional units. We demonstrate applications across a wide range of biosensors, cell types, organs, animal models, and imaging modalities. As exemplar findings, we show how AQuA2 identified drug-dependent interactions between neurons and astroglia, and distinct sensorimotor signal propagation patterns in the mouse spinal cord.
随着新型或改进型生物传感器及显微镜技术的发展,对复杂分子动力学进行光学记录正成为生物学研究中不可或缺的技术。这给从复杂且丰富的数据源中提取和量化具有生物学意义的时空模式带来了重大计算挑战,其中许多模式无法用现有方法捕捉。在此,我们介绍活动量化与分析(AQuA2),这是一个基于先进机器学习技术构建的快速、准确且通用的数据分析平台。它将基于实时成像的复杂数据集分解为基本信号事件,从而能够对分子活动进行准确且无偏差的量化,并识别出一致的功能单元。我们展示了AQuA2在广泛的生物传感器、细胞类型、器官、动物模型及成像方式中的应用。作为典型发现,我们展示了AQuA2如何识别神经元与星形胶质细胞之间的药物依赖性相互作用,以及小鼠脊髓中不同的感觉运动信号传播模式。