Department of Entomology and Nematology, University of California Davis, Davis, CA 95616, United States.
Department of Entomology, University of California Riverside, Riverside, CA 92521, United States.
ISME J. 2024 Jan 8;18(1). doi: 10.1093/ismejo/wrae089.
Host-microbe interactions underlie the development and fitness of many macroorganisms, including bees. Whereas many social bees benefit from vertically transmitted gut bacteria, current data suggests that solitary bees, which comprise the vast majority of species diversity within bees, lack a highly specialized gut microbiome. Here, we examine the composition and abundance of bacteria and fungi throughout the complete life cycle of the ground-nesting solitary bee Anthophora bomboides standfordiana. In contrast to expectations, immature bee stages maintain a distinct core microbiome consisting of Actinobacterial genera (Streptomyces, Nocardiodes) and the fungus Moniliella spathulata. Dormant (diapausing) larval bees hosted the most abundant and distinctive bacteria and fungi, attaining 33 and 52 times their initial copy number, respectively. We tested two adaptive hypotheses regarding microbial functions for diapausing bees. First, using isolated bacteria and fungi, we found that Streptomyces from brood cells inhibited the growth of multiple pathogenic filamentous fungi, suggesting a role in pathogen protection during overwintering, when bees face high pathogen pressure. Second, sugar alcohol composition changed in tandem with major changes in fungal abundance, suggesting links with bee cold tolerance or overwintering biology. We find that A. bomboides hosts a conserved core microbiome that may provide key fitness advantages through larval development and diapause, which raises the question of how this microbiome is maintained and faithfully transmitted between generations. Our results suggest that focus on microbiomes of mature or active insect developmental stages may overlook stage-specific symbionts and microbial fitness contributions during host dormancy.
宿主-微生物相互作用是许多大型生物(包括蜜蜂)的发育和适应的基础。虽然许多社会性蜜蜂受益于垂直传播的肠道细菌,但目前的数据表明,占蜜蜂物种多样性绝大多数的独居蜜蜂缺乏高度专业化的肠道微生物组。在这里,我们研究了在地面筑巢的独居蜜蜂 Anthophora bomboides standfordiana 的整个生命周期中细菌和真菌的组成和丰度。与预期相反,未成熟的蜜蜂阶段保持着独特的核心微生物组,由放线菌类群(链霉菌属、诺卡氏菌属)和真菌 Moniliella spathulata 组成。休眠(滞育)幼虫蜜蜂拥有最丰富和最独特的细菌和真菌,其丰度分别达到初始拷贝数的 33 倍和 52 倍。我们测试了两个关于滞育蜜蜂微生物功能的适应性假设。首先,使用分离的细菌和真菌,我们发现来自幼虫细胞的链霉菌抑制了多种致病性丝状真菌的生长,这表明在蜜蜂面临高病原体压力的越冬期间,它在病原体保护中发挥作用。其次,糖醇组成与真菌丰度的主要变化同步变化,这表明与蜜蜂的耐寒性或越冬生物学有关。我们发现 A. bomboides 拥有一个保守的核心微生物组,它可能通过幼虫发育和滞育提供关键的适应优势,这引发了一个问题,即这个微生物组如何在代际之间维持和忠实地传递。我们的结果表明,关注成熟或活跃昆虫发育阶段的微生物组可能会忽略特定于阶段的共生体和微生物在宿主休眠期间的适应贡献。