Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America.
PLoS Pathog. 2024 May 20;20(5):e1012044. doi: 10.1371/journal.ppat.1012044. eCollection 2024 May.
Pairwise compatibility between virus and host proteins can dictate the outcome of infection. During transmission, both inter- and intraspecies variabilities in receptor protein sequences can impact cell susceptibility. Many viruses possess mutable viral entry proteins and the patterns of host compatibility can shift as the viral protein sequence changes. This combinatorial sequence space between virus and host is poorly understood, as traditional experimental approaches lack the throughput to simultaneously test all possible combinations of protein sequences. Here, we created a pseudotyped virus infection assay where a multiplexed target-cell library of host receptor variants can be assayed simultaneously using a DNA barcode sequencing readout. We applied this assay to test a panel of 30 ACE2 orthologs or human sequence mutants for infectability by the original SARS-CoV-2 spike protein or the Alpha, Beta, Gamma, Delta, and Omicron BA1 variant spikes. We compared these results to an analysis of the structural shifts that occurred for each variant spike's interface with human ACE2. Mutated residues were directly involved in the largest shifts, although there were also widespread indirect effects altering interface structure. The N501Y substitution in spike conferred a large structural shift for interaction with ACE2, which was partially recreated by indirect distal substitutions in Delta, which does not harbor N501Y. The structural shifts from N501Y greatly influenced the set of animal orthologs the variant spike was capable of interacting with. Out of the thirteen non-human orthologs, ten exhibited unique patterns of variant-specific compatibility, demonstrating that spike sequence changes during human transmission can toggle ACE2 compatibility and potential susceptibility of other animal species, and cumulatively increase overall compatibilities as new variants emerge. These experiments provide a blueprint for similar large-scale assessments of protein compatibility during entry by diverse viruses. This dataset demonstrates the complex compatibility relationships that occur between variable interacting host and virus proteins.
病毒和宿主蛋白之间的成对兼容性可以决定感染的结果。在传播过程中,受体蛋白序列的种间和种内变异性都会影响细胞的易感性。许多病毒都具有可变异的病毒进入蛋白,并且随着病毒蛋白序列的变化,宿主兼容性的模式可能会发生变化。病毒和宿主之间的这种组合序列空间理解不足,因为传统的实验方法缺乏同时测试所有可能的蛋白序列组合的通量。在这里,我们创建了一种假型病毒感染测定法,其中可以同时使用 DNA 条码测序读数来测定包含多种宿主受体变体的靶细胞文库。我们应用该测定法来测试 30 种 ACE2 同源物或人类序列突变体对原始 SARS-CoV-2 刺突蛋白或 Alpha、Beta、Gamma、Delta 和 Omicron BA1 变异刺突的感染能力。我们将这些结果与对每个变异刺突与人类 ACE2 界面发生的结构变化的分析进行了比较。突变残基直接参与了最大的结构变化,尽管也有广泛的间接影响改变了界面结构。刺突中的 N501Y 取代导致与 ACE2 相互作用的结构发生了很大的变化,而在不携带 N501Y 的 Delta 中,间接的远端取代部分再现了这种变化。N501Y 的结构变化极大地影响了变异刺突能够与之相互作用的一组动物同源物。在 13 种非人类同源物中,有 10 种表现出独特的变异特异性兼容性模式,这表明在人类传播过程中刺突序列的变化可以改变 ACE2 的兼容性和其他动物物种的潜在易感性,并随着新变体的出现累积增加整体兼容性。这些实验为通过不同病毒进行的类似大规模评估提供了蛋白质兼容性的蓝图。该数据集展示了在进入过程中发生的变量相互作用的宿主和病毒蛋白之间复杂的兼容性关系。